Skip to content

Latest commit

 

History

History
45 lines (38 loc) · 1.25 KB

README.md

File metadata and controls

45 lines (38 loc) · 1.25 KB

ConfDiff

This repository is the official implementation of the paper "Binary Classification with Confidence Difference" and technical details of this approach can be found in the paper.

Requirements:

  • Python 3.6.13
  • numpy 1.19.2
  • Pytorch 1.7.1
  • torchvision 0.8.2
  • pandas 1.1.5
  • scipy 1.5.4

Arguments:

  • mo: model
  • ds: data set
  • uci: uci dataset or not
  • lr: learning rate
  • wd: weight decay
  • gpu: the gpu index
  • ep: training epoch number
  • bs: training batch size
  • pretrain_bs: batch size for training the probabilistic classifier
  • pretrain_ep: epoch number for training the probabilistic classifier
  • me: method name
  • prior: class prior probability
  • n: number of unlabeled data pairs
  • run_times: random running times

Demo:

python main.py -mo mlp -ds mnist -uci 0 -lr 1e-3 -wd 1e-5 -gpu 0 -ep 200 -seed 0 -bs 256 -pretrain_bs 256 -pretrain_ep 10 -me ConfDiffABS -prior 0.5 -n 15000 -run_times 5

Citation

@inproceedings{wang2023binary,
    author = {Wang, Wei and Feng, Lei and Jiang, Yuchen and Niu, Gang and Zhang, Min-Ling and Sugiyama, Masashi},
    title = {Binary classification with confidence difference},
    booktitle = {Advances in Neural Information Processing Systems 36},
    year = {2023},
    pages = {5936--5960}
}