$path_to_SA-1B_dataset/
|–– sa_000000/
|–––– images/
|–––––– sa_1.jpg
|–––––– sa_2.jpg
|–––––– ...
|–– sa_000001/
|–– ...
Step 1. Download tar files from SA-1B to path_to_SA-1B_dataset/
Step 2. Unzip all tar files
For the annotations, we have resaved the top 10k samples from share-captioner_coco_lcs_sam_1246k_1107.json in dataloaders/share4v/share4v_sam_10k.json
$path_to_dci_dataset/
|–– densely_captioned_images/
|–––– annotations/
|–––– complete/
|–––– photos/
|–––– splits.json
Download data following DCI:
Step 1. Download dci.tar.gz and unzip the file in path_to_dci_dataset/densely_captioned_images
Step 2. Download the archive sa_000138.tar and extract the images to the path_to_dci_dataset/densely_captioned_images/photos folder.
$path_to_iiw_dataset/
|–– dci/
|–– docci/
|–– docci_aar/
Download human annotated data following IIW, including IIW-400, DCI-Test, DOCCI-Test:
Step 1: Download DCI to path_to_dci_dataset
Step 2: Download DOCCI images and AAR images from DOCCI dataset. Unzip the files to path_to_docci_dataset/images and path_to_docci_dataset/images_aar, respectively.
Step 3:
cd src/dataloaders/imageinwords
python data_preprocess.py --dci-root path_to_dci_dataset --docci-root path_to_docci_dataset --iiw-root path_to_iiw_dataset