-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
70 lines (56 loc) · 2.29 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
import os
import warnings
import pytorch_lightning as pl
from model import load_model_tokenizer
from utils import prepare_dataset
warnings.filterwarnings(
"ignore", ".*Trying to infer the `batch_size` from an ambiguous collection.*"
)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # or any {'0', '1', '2'}
def print_title(s):
print()
print('=' * 80)
print(s)
print('=' * 80)
def main(args):
args.mode = 'eval'
# Loading Model & Tokenizer
print_title("Loading model, tokenizer")
model, tokenizer = load_model_tokenizer(args)
# Loading train set & dev set
print_title("Loading train set and dev set")
data_module = prepare_dataset(args, tokenizer)
# setup dataModule
data_module.setup()
trainer = pl.Trainer(
max_epochs=0,
gpus=args.n_gpus,
accelerator="ddp",
check_val_every_n_epoch=0
)
# When Pretraining, LoRA Parameters should not be updated
trainer.test(model, data_module)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, choices = ["nq","zsRE"], default = "nq")
parser.add_argument("--n_gpus", type=int, default=4)
parser.add_argument("--dev_path", '--list', nargs='+', type=str,
default=None, required=True)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--checkpoint", type=str, default=None, required=True)
parser.add_argument("--max_source_len", type=int, default=25)
parser.add_argument("--max_target_len", type=int, default=10)
parser.add_argument("--adapter", type=str, choices=[
"LoRA", "K-adapter", "None"], default="LoRA")
# args for Eval When LoRA
parser.add_argument("--lora_rank", type=int, default=256)
parser.add_argument("--lora_attn_alpha", type=int, default=256*4)
parser.add_argument("--attn_lora_rank", type=int, default=256)
parser.add_argument("--lora_attn_attn_alpha", type=int, default=256*4)
parser.add_argument("--lora_dropout", type=float, default=0.1)
parser.add_argument("--lora_r_dropout", type=float, default=0.1)
# This argument is only of Ours+LoRA Method
parser.add_argument("--ours_threshold", type=float, default=0.9)
args = parser.parse_args()
main(args)