-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreader.cpp
182 lines (161 loc) · 5.1 KB
/
reader.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#include <QtGui>
#include "reader.h"
Reader::Reader(QWidget *parent)
: QWidget(parent)
{
emotiv_fd = 0;
gyro_x = 0;
gyro_y = 0;
memset(node_data, 0, sizeof(node_data));
const char * sensor_names[] = {"F3", "FC6", "P7", "T8", "F7", "F8", "T7",
"P8", "AF4", "F4", "AF3", "O2", "O1", "FC5"};
for(int i = 0; i < 14; i++)
sensor_bits[sensor_names[i]] = 0;
map< string, int * >::iterator it;
for( it = sensor_bits.begin(); it != sensor_bits.end(); it++)
{
cout << (*it).first << "\t" ;
}
cout << "Gyro X\tGyro Y\t" << endl;
print = true;
}
bool Reader::connect_emotiv()
{
/* Opens Emotiv if Emotiv is only HID Device attached */
struct udev_device *dev;
struct udev *udev;
struct udev_list_entry *devices, *dev_list_entry;
struct udev_enumerate *enumerate;
udev = udev_new();
enumerate = udev_enumerate_new(udev);
udev_enumerate_add_match_subsystem(enumerate, "hidraw");
udev_enumerate_scan_devices(enumerate);
devices = udev_enumerate_get_list_entry(enumerate);
udev_list_entry_foreach(dev_list_entry, devices)
{
const char * path = udev_list_entry_get_name(dev_list_entry);
dev = udev_device_new_from_syspath(udev,path);
}
emotiv_fd = open(udev_device_get_devnode(dev), O_RDONLY);
if (emotiv_fd > 0)
{
int res = read(emotiv_fd, emotiv_buffer, 32);
if(res < 0) {perror("read"); return false;}
return true;
}
else
{
perror("Unable to open device");
return false;
}
}
void Reader::set_key(uchar * keyinput)
{
AES_set_decrypt_key( keyinput , 128 , &decryptKey );
}
void Reader::decrypt(uchar *in, uchar *out)
{
AES_ecb_encrypt(in, out, &decryptKey, AES_DECRYPT);
AES_ecb_encrypt(&in[AES_BLOCK_SIZE], &out[AES_BLOCK_SIZE], &decryptKey, AES_DECRYPT);
}
void Reader::read_buffer()
{
static int sensorMask_F3[] = {10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7};
static int sensorMask_FC6[] = {214, 215, 200, 201, 202, 203, 204,
205, 206, 207, 192, 193, 194, 195};
static int sensorMask_P7[] = {84, 85, 86, 87, 72, 73, 74,
75, 76, 77, 78, 79, 64, 65};
static int sensorMask_T8[] = {160, 161, 162, 163, 164, 165, 166,
167, 152, 153, 154, 155, 156, 157};
static int sensorMask_F7[] = {48, 49, 50, 51, 52, 53, 54,
55, 40, 41, 42, 43, 44, 45};
static int sensorMask_F8[] = {178, 179, 180, 181, 182, 183, 168,
169, 170, 171, 172, 173, 174, 175};
static int sensorMask_T7[] = {66, 67, 68, 69, 70, 71, 56,
57, 58, 59, 60, 61, 62, 63};
static int sensorMask_P8[] = {158, 159, 144, 145, 146, 147, 148,
149, 150, 151, 136, 137, 138, 139};
static int sensorMask_AF4[] = {196, 197, 198, 199, 184, 185, 186,
187, 188, 189, 190, 191, 176, 177};
static int sensorMask_F4[] = {216, 217, 218, 219, 220, 221, 222,
223, 208, 209, 210, 211, 212, 213};
static int sensorMask_AF3[] = {46, 47, 32, 33, 34, 35, 36,
37, 38, 39, 24, 25, 26, 27};
static int sensorMask_O2[] = {140, 141, 142, 143, 128, 129, 130,
131, 132, 133, 134, 135, 120, 121};
static int sensorMask_O1[] = {102, 103, 88, 89, 90, 91, 92,
93 , 94 , 95, 80, 81, 82, 83};
static int sensorMask_FC5[] = {28, 29, 30, 31, 16, 17, 18,
19, 20, 21, 22, 23, 8, 9};
if(sensor_bits["F3"]==0)
{
sensor_bits["F3"] = sensorMask_F3;
sensor_bits["FC6"] = sensorMask_FC6;
sensor_bits["P7"] = sensorMask_P7;
sensor_bits["T8"] = sensorMask_T8;
sensor_bits["F7"] = sensorMask_F7;
sensor_bits["F8"] = sensorMask_F8;
sensor_bits["T7"] = sensorMask_T7;
sensor_bits["P8"] = sensorMask_P8;
sensor_bits["AF4"] = sensorMask_AF4;
sensor_bits["F4"] = sensorMask_F4;
sensor_bits["AF3"] = sensorMask_AF3;
sensor_bits["O2"] = sensorMask_O2;
sensor_bits["O1"] = sensorMask_O1;
sensor_bits["FC5"] = sensorMask_FC5;
}
static uchar data[32];
read( emotiv_fd , emotiv_buffer , 32);
decrypt(emotiv_buffer, data);
gyro_x = data[29] - offsets[14];
gyro_y = offsets[15] - data[30];
int j = 0;
map< string, int *>::iterator it;
for( it = sensor_bits.begin();
it != sensor_bits.end(); ++it)
{
int level = 0;
for(int i = 13; i > -1; --i)
{
level <<= 1;
int b = ((*it).second[i] / 8 + 1);
int o = ((*it).second[i] % 8);
level |= ((data[b] >> o) & 1);
}
node_data[j] = level;
j++;
if(print)
cout << level << "\t";
}
if(print)
cout << gyro_x << "\t" << gyro_y << endl;
}
void Reader::set_key_Kat()
{
static uchar katKey[]="\x4D\x00\x47\x54\x38\x10\x38\x42"
"\x4D\x00\x47\x48\x38\x00\x38\x50";
set_key(katKey);
static int Kat_offsets[] = {
8120, 7950, 7850, 7880, 8750, 8110, 8590,
8240, 8960, 8470, 8700, 8260, 8640, 7445,
104, 103
};
offsets = Kat_offsets;
}
void Reader::set_key_Will()
{
static uchar willKey[]="\x31\x00\x39\x54\x38\x10\x37"
"\x42\x31\x00\x39\x48\x38\x00\x37\x50";
set_key(willKey);
static int Will_offsets[] = {
7760, 8530, 8000, 8510, 8900, 8400, 8320,
8720, 7230, 8820, 7700, 8050, 9080, 8650,
104, 105
};
offsets = Will_offsets;
}
void Reader::toggle_print()
{
print = !print;
}