-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathall_data_plots.m
204 lines (172 loc) · 7.04 KB
/
all_data_plots.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
%% Scripts for ALL data over common time period (1893 - 1983)
% Run the EOF
clear
load NAll_data.mat
[COEFF,SCORE,latent,tsquare,var_explained] = EOF_calc(NAll_data_common(:,2:25));
save('NAll_data.mat','COEFF','SCORE','latent','tsquare','var_explained','-append');
[COEFF_S,SCORE_S,latent_S,tsquare_S,var_explained_S] = EOF_calc(NAll_data_shifted(:,2:25));
save('NAll_data.mat','COEFF_S','SCORE_S','latent_S','tsquare_S','var_explained_S','-append');
clear
load('NAll_data.mat','SCORE_S')
load ('SAM_20CR.mat','uwind_SF','uwind_MA','time');
load('20CR.mat')
SCORE_S = flipud(SCORE_S);
EOF1_20CR_SF = nan(91,180); P_EOF1_20CR_SF = nan(91,180);
EOF1_20CR_MA = nan(91,180); P_EOF1_20CR_MA = nan(91,180);
EOF1_20CR_AN = nan(46,180); P_EOF2_20CR_SF = nan(91,180);
EOF2_20CR_SF = nan(91,180); P_EOF2_20CR_MA = nan(91,180);
EOF2_20CR_MA = nan(91,180); P_EOF3_20CR_SF = nan(91,180);
EOF2_20CR_AN = nan(46,180); P_EOF3_20CR_MA = nan(91,180);
EOF3_20CR_SF = nan(91,180); P_EOF4_20CR_SF = nan(91,180);
EOF3_20CR_MA = nan(91,180); P_EOF4_20CR_MA = nan(91,180);
EOF3_20CR_AN = nan(46,180); P_EOF1_20CR_AN = nan(46,180);
EOF4_20CR_SF = nan(91,180); P_EOF2_20CR_AN = nan(46,180);
EOF4_20CR_MA = nan(91,180); P_EOF3_20CR_AN = nan(46,180);
EOF4_20CR_AN = nan(46,180); P_EOF4_20CR_AN = nan(46,180);
for j = 1:91
for k = 1:180
[EOF1_20CR_SF(j,k) P_EOF1_20CR_SF(j,k) ]= corr(SCORE_S(:,1),uwind_SF(23:113,j,k));
[EOF1_20CR_MA(j,k) P_EOF1_20CR_MA(j,k) ] = corr(SCORE_S(:,1),uwind_MA(23:113,j,k));
[EOF2_20CR_SF(j,k) P_EOF2_20CR_SF(j,k) ] = corr(SCORE_S(:,2),uwind_SF(23:113,j,k));
[EOF2_20CR_MA(j,k) P_EOF2_20CR_MA(j,k) ] = corr(SCORE_S(:,2),uwind_MA(23:113,j,k));
[EOF3_20CR_SF(j,k) P_EOF3_20CR_SF(j,k) ] = corr(SCORE_S(:,3),uwind_SF(23:113,j,k));
[EOF3_20CR_MA(j,k) P_EOF3_20CR_MA(j,k) ] = corr(SCORE_S(:,3),uwind_MA(23:113,j,k));
[EOF4_20CR_SF(j,k) P_EOF4_20CR_SF(j,k) ] = corr(SCORE_S(:,4),uwind_SF(23:113,j,k));
[EOF4_20CR_MA(j,k) P_EOF4_20CR_MA(j,k) ] = corr(SCORE_S(:,4),uwind_MA(23:113,j,k));
end
end
for i = 1:46
for j = 1:180
[EOF1_20CR_AN(i,j) P_EOF1_20CR_AN(i,j)] = corr(SCORE_S(:,1),squeeze(ann20CR_1870_1998(j,i,24:114)));
[EOF2_20CR_AN(i,j) P_EOF2_20CR_AN(i,j)] = corr(SCORE_S(:,2),squeeze(ann20CR_1870_1998(j,i,24:114)));
[EOF3_20CR_AN(i,j) P_EOF3_20CR_AN(i,j)] = corr(SCORE_S(:,3),squeeze(ann20CR_1870_1998(j,i,24:114)));
[EOF4_20CR_AN(i,j) P_EOF4_20CR_AN(i,j)] = corr(SCORE_S(:,4),squeeze(ann20CR_1870_1998(j,i,24:114)));
end
end
save('Alldata_corrs.mat','EOF1_20CR_SF','EOF1_20CR_MA','EOF1_20CR_AN','EOF2_20CR_SF','EOF2_20CR_MA','EOF2_20CR_AN',...
'EOF3_20CR_SF','EOF3_20CR_MA','EOF3_20CR_AN','EOF4_20CR_SF','EOF4_20CR_MA','EOF4_20CR_AN',...
'P_EOF1_20CR_SF','P_EOF1_20CR_MA','P_EOF1_20CR_AN','P_EOF2_20CR_SF','P_EOF2_20CR_MA','P_EOF2_20CR_AN',...
'P_EOF3_20CR_SF','P_EOF3_20CR_MA','P_EOF3_20CR_AN','P_EOF4_20CR_SF','P_EOF4_20CR_MA','P_EOF4_20CR_AN');
%% Plotting - Timeseries plots
figure(1)
plot(var_explained_S,'+','linestyle','-')
line([0 25],[50 50],'linestyle','--','color','black')
ylabel('Cumulative Variance Explained')
xlabel('No. of PCs')
% From this we want to retain the first 4 PCs. This is arbitrary, the
% threshold is that we can explain 50% of the variance.
rng = nan(91,2);
for i = 1:91
rng(i,1) = min(NAll_data_shifted(i,2:25));
rng(i,2) = max(NAll_data_shifted(i,2:25));
end
for i = 2:25
run11yrmean(:,i) = tsmovavg(NAll_data_shifted(:,i),'s',11,1);
end
figure(2)
subplot(4,1,1)
jbfill(NAll_data_shifted(:,1)',rng(:,2)',rng(:,1)','b','k',[],0.3);
hold on
for i = 2:25
plot(NAll_data_shifted(6:86,1),run11yrmean(11:91,i),... % plot so that running mean is centered
'color',rand(1,3),...
'linewidth',2)
end
EOF1_11 = tsmovavg(SCORE_S(:,1),'s',11,1);
EOF2_11 = tsmovavg(SCORE_S(:,2),'s',11,1);
EOF3_11 = tsmovavg(SCORE_S(:,3),'s',11,1);
subplot(4,1,2)
hold on
plot(NAll_data_shifted(1:91,1),SCORE_S(:,1),'color','m','linewidth',2)
plot(NAll_data_shifted(6:86,1),EOF1_11(11:91),'color','k','linewidth',2)
subplot(4,1,3)
hold on
plot(NAll_data_shifted(1:91,1),SCORE_S(:,2),'color','r','linewidth',2)
plot(NAll_data_shifted(6:86,1),EOF2_11(11:91),'color','k','linewidth',2)
subplot(4,1,4)
hold on
plot(NAll_data_shifted(1:91,1),SCORE_S(:,3),'color','b','linewidth',2)
plot(NAll_data_shifted(6:86,1),EOF3_11(11:91),'color','k','linewidth',2)
%% Spatial correlations
% 20CR
clear
load Alldata_corrs.mat
load('20CR.mat','lon','lat')
lat_AN = lat;
lon_AN = lon;
load('SAM_20CR.mat','lon','lat')
lat = double(lat)';
lon = double(lon)';
lat_AN = double(lat_AN)';
lon_AN = double(lon_AN)';
EOF_seas = nan(8,91,180);
EOF_seas(1,:,:) = EOF1_20CR_SF;
EOF_seas(2,:,:) = EOF2_20CR_SF;
EOF_seas(3,:,:) = EOF3_20CR_SF;
EOF_seas(4,:,:) = EOF4_20CR_SF;
EOF_seas(5,:,:) = EOF1_20CR_MA;
EOF_seas(6,:,:) = EOF2_20CR_MA;
EOF_seas(7,:,:) = EOF3_20CR_MA;
EOF_seas(8,:,:) = EOF4_20CR_MA;
EOF_AN = nan(4,46,180);
EOF_AN(1,:,:) = EOF1_20CR_AN;
EOF_AN(2,:,:) = EOF2_20CR_AN;
EOF_AN(3,:,:) = EOF3_20CR_AN;
EOF_AN(4,:,:) = EOF4_20CR_AN;
P_EOF_seas = nan(8,91,180);
P_EOF_seas(1,:,:) = P_EOF1_20CR_SF;
P_EOF_seas(2,:,:) = P_EOF2_20CR_SF;
P_EOF_seas(3,:,:) = P_EOF3_20CR_SF;
P_EOF_seas(4,:,:) = P_EOF4_20CR_SF;
P_EOF_seas(5,:,:) = P_EOF1_20CR_MA;
P_EOF_seas(6,:,:) = P_EOF2_20CR_MA;
P_EOF_seas(7,:,:) = P_EOF3_20CR_MA;
P_EOF_seas(8,:,:) = P_EOF4_20CR_MA;
P_EOF_AN = nan(4,46,180);
P_EOF_AN(1,:,:) = P_EOF1_20CR_AN;
P_EOF_AN(2,:,:) = P_EOF2_20CR_AN;
P_EOF_AN(3,:,:) = P_EOF3_20CR_AN;
P_EOF_AN(4,:,:) = P_EOF4_20CR_AN;
figure
fig_20CR_SF = tight_subplot(3,4,[0.01 0.01],[0.10 0.1],[0.1 0.01]);
for i = 1:12
axes(fig_20CR_SF(i));
m_proj('stereographic','lat',-90,'long',0,'radius',90);
end
for a = 1:8
clear row col
[row,col] = find(squeeze(P_EOF_seas(a,:,:)) > 0.05);
for i = 1:length(col)
EOF_seas(a,row(i),col(i)) = NaN;
end
good_EOF = squeeze(EOF_seas(a,:,:));
good_EOF(abs(good_EOF) < 0.3) = nan;
axes(fig_20CR_SF(a));
m_pcolor(lon,lat,squeeze(EOF_seas(a,:,:))); shading flat;
hold
m_coast('color','k','linewidth',2);
m_grid('xticklabels',[],'yticklabels',[],'linest','--');
colormap(b2r(-1,1));
caxis manual
caxis([-1 1]);
m_contour(lon,lat,squeeze(good_EOF(:,:)),'linewidth',1.5,'color','k');
end
for a = 1:4
clear row col
[row,col] = find(squeeze(P_EOF_AN(a,:,:)) > 0.05);
for i = 1:length(col)
EOF_AN(a,row(i),col(i)) = NaN;
end
good_EOF = squeeze(EOF_AN(a,:,:));
good_EOF(abs(good_EOF) < 0.3) = nan;
axes(fig_20CR_SF(a+8));
m_pcolor(lon_AN,lat_AN,squeeze(EOF_AN(a,:,:))); shading flat;
hold
m_coast('color','k','linewidth',2);
m_grid('xticklabels',[],'yticklabels',[],'linest','--');
colormap(b2r(-1,1));
caxis manual
caxis([-1 1]);
m_contour(lon_AN,lat_AN,squeeze(good_EOF(:,:)),'linewidth',1.5,'color','k');
end
print -dpdf -painters 'Alldata_20CR_EOFs.pdf'