forked from pbelevich/pipeline_experiments
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist5.py
230 lines (188 loc) · 8.08 KB
/
mnist5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import torch.multiprocessing as mp
import torch.distributed.rpc as rpc
import os
import concurrent.futures
from torch.distributed.optim import DistributedOptimizer
from torch.distributed.rpc import RRef
import torch.distributed.autograd as dist_autograd
class RemoteBaseCUDARPC(nn.Module):
def __init__(self, underlying, device):
super().__init__()
self.underlying = underlying.to(device)
self.device = device
def forward(self, x_rref):
return self.underlying(x_rref.to_here())
def parameter_rrefs(self):
return [RRef(p) for p in self.parameters()]
class MyRPCPipelineWrapper(nn.Module):
def __init__(self, underlying, remote_device):
super().__init__()
self.underlying = underlying
self.worker, self.device = remote_device.split(":")
self.device = int(self.device)
self.shard = None
def move_underlying_to_device(self):
self.shard = rpc.remote(self.worker, RemoteBaseCUDARPC, args=(self.underlying, self.device))
def train(self, mode=True):
self.shard.rpc_sync().train(mode)
def eval(self):
self.shard.rpc_sync().eval()
def forward(self, *args, **kwargs):
return self.shard.remote().forward(*args, **kwargs)
def parameter_rrefs(self):
return self.shard.remote().parameter_rrefs()
class MyRPCPipelineDistMultiGPULayer(nn.Module):
def __init__(self, layer, in_features, out_features, remote_devices=None, result_remote_device=None, *args, **kwargs):
super().__init__()
self.workers = [remote_device.split(":")[0] for remote_device in remote_devices]
self.devices = [int(remote_device.split(":")[1]) for remote_device in remote_devices]
if result_remote_device is None:
result_remote_device = remote_devices[-1]
self.result_worker, self.result_device = result_remote_device.split(":")
self.result_device = int(self.result_device)
n_devices = len(remote_devices)
if out_features < n_devices:
self.shard_out_features = [1] * out_features
self.workers = self.workers[:out_features]
self.devices = self.devices[:out_features]
elif out_features % n_devices == 0:
self.shard_out_features = [out_features // n_devices] * n_devices
else:
size = (out_features + n_devices - 1) // n_devices
self.shard_out_features = [size] * (n_devices - 1) + [out_features - size * (n_devices - 1)]
self.in_features = in_features
self.shards = [rpc.remote(worker, RemoteBaseCUDARPC, args=(layer(self.in_features, shard_out_feature, *args, **kwargs), device)) for worker, shard_out_feature, device in zip(self.workers, self.shard_out_features, self.devices)]
self.concater = rpc.remote(self.result_worker, RemoteConcater, args=(self.result_device,))
def move_underlying_to_device(self):
pass
def forward(self, input):
rrefs = [shard.remote().forward(input) for shard in self.shards]
return self.concater.remote().forward(rrefs)
def parameter_rrefs(self):
remote_params = []
for shard in self.shards:
remote_params.extend(shard.remote().parameter_rrefs().to_here())
return RRef(remote_params)
class RemoteConcater(nn.Module):
def __init__(self, device):
super().__init__()
def forward(self, rrefs):
return torch.cat([rref.to_here() for rref in rrefs], dim=-1)
class MyRPCPipeline(nn.Sequential):
def __init__(self, *layers):
super().__init__(*layers)
with concurrent.futures.ThreadPoolExecutor() as executor:
concurrent.futures.wait([executor.submit(lambda l: l.move_underlying_to_device(), layer) for layer in self])
def forward(self, x):
return super().forward(RRef(x)).to_here()
def parameter_rrefs(self):
remote_params = []
for layer in self:
remote_params.extend(layer.parameter_rrefs().to_here())
return remote_params
def run_main():
batch_size = 100
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_data = datasets.MNIST('./data', train=True, download=True, transform=transform)
valid_data = datasets.MNIST('./data', train=False, transform=transform)
train_dataloader = torch.utils.data.DataLoader(train_data, batch_size=batch_size)
valid_dataloader = torch.utils.data.DataLoader(valid_data, batch_size=batch_size)
input_size = 784
hidden_sizes = [128, 64]
output_size = 10
model = MyRPCPipeline(
MyRPCPipelineWrapper(nn.Flatten(), "worker1:0"),
MyRPCPipelineDistMultiGPULayer(
nn.Linear, input_size, hidden_sizes[0],
remote_devices=("worker1:0", "worker2:1"), result_remote_device=("worker2:1")
),
MyRPCPipelineWrapper(nn.ReLU(), "worker2:1"),
MyRPCPipelineWrapper(nn.Sequential(
nn.Linear(hidden_sizes[0], hidden_sizes[1]),
nn.ReLU(),
), "worker3:3"),
MyRPCPipelineWrapper(nn.Linear(hidden_sizes[1], output_size), "worker4:5"),
)
criterion = nn.CrossEntropyLoss()
optimizer = DistributedOptimizer(
optim.Adam,
model.parameter_rrefs(),
)
loaders = {"train": train_dataloader, "valid": valid_dataloader}
max_epochs = 10
accuracy = {"train": [], "valid": []}
for epoch in range(max_epochs):
print(f"Epoch: {epoch+1}")
epoch_correct = 0
epoch_all = 0
for k, dataloader in loaders.items():
for i, (x_batch, y_batch) in enumerate(dataloader):
x_batch = x_batch.to(0)
y_batch = y_batch.to(5)
if k == "train":
model.train()
with dist_autograd.context() as context_id:
outp = model(x_batch)
preds = outp.argmax(-1)
correct = (preds == y_batch).sum()
all = len(y_batch)
epoch_correct += correct.item()
epoch_all += all
loss = criterion(outp, y_batch)
dist_autograd.backward(context_id, [loss])
optimizer.step(context_id)
else:
model.eval()
# with torch.no_grad():
outp = model(x_batch)
preds = outp.argmax(-1)
correct = (preds == y_batch).sum()
all = len(y_batch)
epoch_correct += correct.item()
epoch_all += all
print(f"Loader: {k}. Accuracy: {epoch_correct/epoch_all}")
accuracy[k].append(epoch_correct/epoch_all)
def run_worker(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '29500'
options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=256)
if rank == 0:
options.set_device_map("worker1", {0:0})
options.set_device_map("worker2", {0:1})
options.set_device_map("worker3", {3:3})
options.set_device_map("worker4", {5:5})
rpc.init_rpc(
"master",
rank=rank,
world_size=world_size,
rpc_backend_options=options
)
run_main()
else:
if rank == 1:
options.set_device_map("master", {0:0})
elif rank == 2:
options.set_device_map("master", {1:0})
options.set_device_map("worker1", {1:0})
elif rank == 3:
options.set_device_map("worker2", {3:1})
elif rank == 4:
options.set_device_map("worker3", {5:3})
rpc.init_rpc(
f"worker{rank}",
rank=rank,
world_size=world_size,
rpc_backend_options=options
)
rpc.shutdown()
if __name__=="__main__":
gpus = 4
world_size = gpus + 1
mp.spawn(run_worker, args=(world_size,), nprocs=world_size, join=True)