forked from pbelevich/pipeline_experiments
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist1.py
66 lines (57 loc) · 2.28 KB
/
mnist1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
if __name__=="__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_data = datasets.MNIST('./data', train=True, download=True, transform=transform)
valid_data = datasets.MNIST('./data', train=False, transform=transform)
train_dataloader = torch.utils.data.DataLoader(train_data, batch_size=100)
valid_dataloader = torch.utils.data.DataLoader(valid_data, batch_size=100)
input_size = 784
hidden_sizes = [128, 64]
output_size = 10
model = nn.Sequential(
nn.Flatten(),
nn.Linear(input_size, hidden_sizes[0]),
nn.ReLU(),
nn.Linear(hidden_sizes[0], hidden_sizes[1]),
nn.ReLU(),
nn.Linear(hidden_sizes[1], output_size),
).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())
loaders = {"train": train_dataloader, "valid": valid_dataloader}
max_epochs = 10
accuracy = {"train": [], "valid": []}
for epoch in range(max_epochs):
print(f"Epoch: {epoch+1}")
epoch_correct = 0
epoch_all = 0
for k, dataloader in loaders.items():
for i, (x_batch, y_batch) in enumerate(dataloader):
x_batch = x_batch.to(device)
y_batch = y_batch.to(device)
if k == "train":
model.train()
optimizer.zero_grad()
outp = model(x_batch)
else:
model.eval()
with torch.no_grad():
outp = model(x_batch)
preds = outp.argmax(-1)
correct = (preds == y_batch).sum()
all = len(y_batch)
epoch_correct += correct.item()
epoch_all += all
if k == "train":
loss = criterion(outp, y_batch)
loss.backward()
optimizer.step()
print(f"Loader: {k}. Accuracy: {epoch_correct/epoch_all}")
accuracy[k].append(epoch_correct/epoch_all)