-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmono_tum.cc
312 lines (257 loc) · 10.1 KB
/
mono_tum.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/**
* This file is part of ORB-SLAM2.
*
* Copyright (C) 2014-2016 Raúl Mur-Artal <raulmur at unizar dot es> (University of Zaragoza)
* For more information see <https://github.com/raulmur/ORB_SLAM2>
*
* ORB-SLAM2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ORB-SLAM2. If not, see <http://www.gnu.org/licenses/>.
*/
#include<iostream>
#include<algorithm>
#include<fstream>
#include<chrono>
#include <string>
#include<opencv2/core/core.hpp>
#include<System.h>
#include <Converter.h>
using namespace std;
void LoadImages(const string &strFile, vector<string> &vstrImageFilenames,
vector<double> &vTimestamps);
// how to run:
// 0 for sequence, 1 for webcam, 2 for drone
// ./Examples/Monocular/mono_tum 0 Vocabulary/ORBvoc.txt Examples/Monocular/DRONE_PARAMS.yaml PATH_TO_SEQUENCE
// ./Examples/Monocular/mono_tum 1 Vocabulary/ORBvoc.txt Examples/Monocular/DRONE_PARAMS.yaml
// ./Examples/Monocular/mono_tum 2 Vocabulary/ORBvoc.txt Examples/Monocular/DRONE_PARAMS.yaml
int main(int argc, char **argv)
{
std::string str0 ("0");
std::string str1 ("1");
std::string str2 ("2");
if (str1.compare(argv[1]) == 0) {
if(argc != 4) {
cerr << endl << "argc:" << argc << "!= 4"<< endl;
}
cv::VideoCapture cap(0);
if (!cap.isOpened()) {
cerr << endl << "Could not open camera feed." << endl;
return -1;
}
ORB_SLAM2::System SLAM(argv[2], argv[3], ORB_SLAM2::System::MONOCULAR, true);
cout << endl << "-------" << endl;
cout << "Start processing sequence ..." << endl;
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point initT = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point initT = std::chrono::monotonic_clock::now();
#endif
// Main loop
while(true)//cv::waitKey(0) != 27)
{
//Create a new Mat
cv::Mat frame;
//Send the captured frame to the new Mat
cap >> frame;
if(frame.empty())
break;
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point nowT = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point nowT = std::chrono::monotonic_clock::now();
#endif
// Pass the image to the SLAM system
SLAM.TrackMonocular(frame, std::chrono::duration_cast<std::chrono::duration<double> >(nowT-initT).count());
}
// Save points
std::vector<ORB_SLAM2::MapPoint*> mapPoints = SLAM.GetMap()->GetAllMapPoints();
std::ofstream pointData;
pointData.open("/tmp/pointData.csv");
for(auto p : mapPoints) {
if (p != NULL)
{
auto point = p->GetWorldPos();
Eigen::Matrix<double, 3, 1> v = ORB_SLAM2::Converter::toVector3d(point);
pointData << v.x() << "," << v.y() << "," << v.z()<< std::endl;
}
}
pointData.close();
// Stop all threads
SLAM.Shutdown();
//slam->SaveSeperateKeyFrameTrajectoryTUM("KeyFrameTrajectory-1.txt", "KeyFrameTrajectory-2.txt", "KeyFrameTrajectory-3.txt");
SLAM.SaveKeyFrameTrajectoryTUM("KeyFrameTrajectory.txt");
}
if (str2.compare(argv[1]) == 0) {
if(argc != 4) {
cerr << endl << "argc:" << argc << "!= 4"<< endl;
}
cv::VideoCapture cap("udp://@0.0.0.0:11111?overrun_nonfatal=1&fifo_size=50000000");
if (!cap.isOpened()) {
cerr << endl << "Could not open camera feed." << endl;
return -1;
}
ORB_SLAM2::System SLAM(argv[2], argv[3], ORB_SLAM2::System::MONOCULAR, true);
cout << endl << "-------" << endl;
cout << "Start processing sequence ..." << endl;
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point initT = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point initT = std::chrono::monotonic_clock::now();
#endif
// Main loop
while(true)//cv::waitKey(0) != 27)
{
//Create a new Mat
cv::Mat frame;
//Send the captured frame to the new Mat
cap >> frame;
if(frame.empty())
break;
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point nowT = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point nowT = std::chrono::monotonic_clock::now();
#endif
// Pass the image to the SLAM system
SLAM.TrackMonocular(frame, std::chrono::duration_cast<std::chrono::duration<double> >(nowT-initT).count());
}
// Save points
std::vector<ORB_SLAM2::MapPoint*> mapPoints = SLAM.GetMap()->GetAllMapPoints();
std::ofstream pointData;
pointData.open("/tmp/pointData.csv");
for(auto p : mapPoints) {
if (p != NULL)
{
auto point = p->GetWorldPos();
Eigen::Matrix<double, 3, 1> v = ORB_SLAM2::Converter::toVector3d(point);
pointData << v.x() << "," << v.y() << "," << v.z()<< std::endl;
}
}
pointData.close();
// Stop all threads
SLAM.Shutdown();
//slam->SaveSeperateKeyFrameTrajectoryTUM("KeyFrameTrajectory-1.txt", "KeyFrameTrajectory-2.txt", "KeyFrameTrajectory-3.txt");
SLAM.SaveKeyFrameTrajectoryTUM("KeyFrameTrajectory.txt");
}
if (str0.compare(argv[1]) == 0) {
if(argc != 5){
cerr << endl << "Usage: NUM ./mono_tum path_to_vocabulary path_to_settings path_to_sequence" << endl;
return 1;
}
// Retrieve paths to images
vector<string> vstrImageFilenames;
vector<double> vTimestamps;
string strFile = string(argv[4])+"/rgb.txt";
LoadImages(strFile, vstrImageFilenames, vTimestamps);
int nImages = vstrImageFilenames.size();
// Create SLAM system. It initializes all system threads and gets ready to process frames.
ORB_SLAM2::System SLAM(argv[2],argv[3],ORB_SLAM2::System::MONOCULAR,true);
// Vector for tracking time statistics
vector<float> vTimesTrack;
vTimesTrack.resize(nImages);
cout << endl << "-------" << endl;
cout << "Start processing sequence ..." << endl;
cout << "Images in the sequence: " << nImages << endl << endl;
cout << endl << "-------" << endl;
cout << "Start processing sequence ..." << endl;
// Main loop
cv::Mat im;
for(int ni=0; ni<nImages; ni++)
{
// Read image from file
im = cv::imread(string(argv[4])+"/"+vstrImageFilenames[ni],CV_LOAD_IMAGE_UNCHANGED);
double tframe = vTimestamps[ni];
if(im.empty())
{
cerr << endl << "Failed to load image at: "
<< string(argv[4]) << "/" << vstrImageFilenames[ni] << endl;
return 1;
}
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t1 = std::chrono::monotonic_clock::now();
#endif
// Pass the image to the SLAM system
SLAM.TrackMonocular(im,tframe);
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t2 = std::chrono::monotonic_clock::now();
#endif
double ttrack= std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
vTimesTrack[ni]=ttrack;
// Wait to load the next frame
double T=0;
if(ni<nImages-1)
T = vTimestamps[ni+1]-tframe;
else if(ni>0)
T = tframe-vTimestamps[ni-1];
if(ttrack<T)
usleep((T-ttrack)*1e6);
}
// Save points
std::vector<ORB_SLAM2::MapPoint*> mapPoints = SLAM.GetMap()->GetAllMapPoints();
std::ofstream pointData;
pointData.open("/tmp/pointData.csv");
for(auto p : mapPoints) {
if (p != NULL)
{
auto point = p->GetWorldPos();
Eigen::Matrix<double, 3, 1> v = ORB_SLAM2::Converter::toVector3d(point);
pointData << v.x() << "," << v.y() << "," << v.z()<< std::endl;
}
}
pointData.close();
// Stop all threads
SLAM.Shutdown();
// Tracking time statistics
sort(vTimesTrack.begin(),vTimesTrack.end());
float totaltime = 0;
for(int ni=0; ni<nImages; ni++)
{
totaltime+=vTimesTrack[ni];
}
cout << "-------" << endl << endl;
cout << "median tracking time: " << vTimesTrack[nImages/2] << endl;
cout << "mean tracking time: " << totaltime/nImages << endl;
// Save camera trajectory
SLAM.SaveKeyFrameTrajectoryTUM("KeyFrameTrajectory.txt");
}
return 0;
}
void LoadImages(const string &strFile, vector<string> &vstrImageFilenames, vector<double> &vTimestamps)
{
ifstream f;
f.open(strFile.c_str());
// skip first three lines
string s0;
getline(f,s0);
getline(f,s0);
getline(f,s0);
while(!f.eof())
{
string s;
getline(f,s);
if(!s.empty())
{
stringstream ss;
ss << s;
double t;
string sRGB;
ss >> t;
vTimestamps.push_back(t);
ss >> sRGB;
vstrImageFilenames.push_back(sRGB);
}
}
}