-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy patheval.py
147 lines (128 loc) · 5.84 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# coding:utf-8
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
import datetime
from utils import *
import cfgs.cfgs_eval as cfgs
from collections import OrderedDict
import time
import sys
def flatten_label(target):
label_flatten = []
label_length = []
for i in range(0, target.size()[0]):
cur_label = target[i].tolist()
label_flatten += cur_label[:cur_label.index(0) + 1]
label_length.append(cur_label.index(0) + 1)
label_flatten = torch.LongTensor(label_flatten)
label_length = torch.IntTensor(label_length)
return (label_flatten, label_length)
def Train_or_Eval(model, state='Train'):
if state == 'Train':
model.train()
else:
model.eval()
def load_dataset():
train_data_set = cfgs.dataset_cfgs['dataset_train'](**cfgs.dataset_cfgs['dataset_train_args'])
train_loader = DataLoader(train_data_set, **cfgs.dataset_cfgs['dataloader_train'])
test_data_all = cfgs.dataset_cfgs['dataset_test'](**cfgs.dataset_cfgs['dataset_test_all'])
test_loader_all = DataLoader(test_data_all, **cfgs.dataset_cfgs['dataloader_test'])
test_data_set = cfgs.dataset_cfgs['dataset_test'](**cfgs.dataset_cfgs['dataset_test_args'])
test_loader = DataLoader(test_data_set, **cfgs.dataset_cfgs['dataloader_test'])
test_data_setIC13 = cfgs.dataset_cfgs['dataset_test'](**cfgs.dataset_cfgs['dataset_test_argsIC13'])
test_loaderIC13 = DataLoader(test_data_setIC13, **cfgs.dataset_cfgs['dataloader_test'])
test_data_setIC15 = cfgs.dataset_cfgs['dataset_test'](**cfgs.dataset_cfgs['dataset_test_argsIC15'])
test_loaderIC15 = DataLoader(test_data_setIC15, **cfgs.dataset_cfgs['dataloader_test'])
test_data_setSVT = cfgs.dataset_cfgs['dataset_test'](**cfgs.dataset_cfgs['dataset_test_argsSVT'])
test_loaderSVT = DataLoader(test_data_setSVT, **cfgs.dataset_cfgs['dataloader_test'])
test_data_setSVTP = cfgs.dataset_cfgs['dataset_test'](**cfgs.dataset_cfgs['dataset_test_argsSVTP'])
test_loaderSVTP = DataLoader(test_data_setSVTP, **cfgs.dataset_cfgs['dataloader_test'])
test_data_setCUTE = cfgs.dataset_cfgs['dataset_test'](**cfgs.dataset_cfgs['dataset_test_argsCUTE'])
test_loaderCUTE = DataLoader(test_data_setCUTE, **cfgs.dataset_cfgs['dataloader_test'])
# pdb.set_trace()
return (train_loader, test_loader_all, test_loader, test_loaderIC13, test_loaderIC15, test_loaderSVT, test_loaderSVTP, test_loaderCUTE)
def load_network():
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_VL = cfgs.net_cfgs['VisualLAN'](**cfgs.net_cfgs['args'])
model_VL = model_VL.to(device)
model_VL = torch.nn.DataParallel(model_VL)
if cfgs.net_cfgs['init_state_dict'] != None:
fe_state_dict_ori = torch.load(cfgs.net_cfgs['init_state_dict'])
fe_state_dict = OrderedDict()
for k, v in fe_state_dict_ori.items():
# if 'MLM' in k:
# print()
if 'module' not in k:
k = 'module.' + k
else:
k = k.replace('features.module.', 'module.features.')
fe_state_dict[k] = v
model_dict_fe = model_VL.state_dict()
state_dict_fe = {k: v for k, v in fe_state_dict.items() if k in model_dict_fe.keys()}
model_dict_fe.update(state_dict_fe)
model_VL.load_state_dict(model_dict_fe)
return model_VL
def test(test_loader, model, tools, best_acc, string_name):
Train_or_Eval(model, 'Eval')
print('------' + string_name + '--------')
for sample_batched in test_loader:
data = sample_batched['image']
label = sample_batched['label']
target = tools[0].encode(label)
data = data.cuda()
target = target
label_flatten, length = tools[1](target)
target, label_flatten = target.cuda(), label_flatten.cuda()
output, out_length = model(data, target, '', False)
tools[2].add_iter(output, out_length, length, label)
best_acc, change = tools[2].show_test(best_acc)
Train_or_Eval(model, 'Train')
return best_acc, change
if __name__ == '__main__':
model = load_network()
train_loader, test_loader_all, test_loader, test_loaderIC13, test_loaderIC15, test_loaderSVT, test_loaderSVTP, test_loaderCUTE = load_dataset()
test_acc_counter = Attention_AR_counter('\ntest accuracy: ', cfgs.dataset_cfgs['dict_dir'],
cfgs.dataset_cfgs['case_sensitive'])
encdec = cha_encdec(cfgs.dataset_cfgs['dict_dir'], cfgs.dataset_cfgs['case_sensitive'])
if cfgs.global_cfgs['state'] == 'Test':
test((test_loader_all),
model,
[encdec,
flatten_label,
test_acc_counter], best_acc=0, string_name='Average on 6 benchmarks')
test((test_loader),
model,
[encdec,
flatten_label,
test_acc_counter], best_acc=0, string_name='IIIT')
test((test_loaderIC13),
model,
[encdec,
flatten_label,
test_acc_counter], best_acc=0, string_name='IC13')
test((test_loaderIC15),
model,
[encdec,
flatten_label,
test_acc_counter], best_acc=0, string_name='IC15')
test((test_loaderSVT),
model,
[encdec,
flatten_label,
test_acc_counter], best_acc=0, string_name='SVT')
test((test_loaderSVTP),
model,
[encdec,
flatten_label,
test_acc_counter], best_acc=0, string_name='SVTP')
test((test_loaderCUTE),
model,
[encdec,
flatten_label,
test_acc_counter], best_acc=0, string_name='CUTE')
exit()