-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdeep_nextitnet.py
308 lines (263 loc) · 13.2 KB
/
deep_nextitnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import tensorflow as tf
import data_loader
import generator_deep
import shutil
import time
import math
import numpy as np
import argparse
import sys
import os
import random
import ast
tf.set_random_seed(10)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--top_k', type=int, default=5,
help='sample from top k predictions')
parser.add_argument('--beta1', type=float, default=0.9,
help='hyperpara-Adam')
parser.add_argument('--datapath', type=str, default="Data/movielen_20/movielen_20.csv",
help='data path')
parser.add_argument('--save_dir', type=str, default="Models/ml20_baseline_16_emb64_bs256",
help='save dir path')
parser.add_argument('--eval_iter', type=int, default=1000,
help='output evry x steps')
parser.add_argument('--early_stop', type=int, default=10,
help='after x eval_iter early stop')
parser.add_argument('--step', type=int, default=400000,
help='trainging step')
parser.add_argument('--tt_percentage', type=float, default=0.2,
help='0.2 means 80% training 20% testing')
parser.add_argument('--data_ratio', type=float, default=0.4,
help='real training data')
parser.add_argument('--learning_rate', type=float, default=0.001,
help='learning rate')
parser.add_argument('--L2', type=float, default=0,
help='L2 regularization')
parser.add_argument('--dilation_count', type=int, default=16,
help='dilation count number')
parser.add_argument('--method', type=str, default="from_scratch",
help='from_scratch, StackR, stackC, stackA')
parser.add_argument('--load_model', type=ast.literal_eval, default=False,
help='whether loading pretrain model')
parser.add_argument('--model_path', type=str, default="Models/",
help='load model path')
parser.add_argument('--padid', type=int, default=0,
help='pad id')
args = parser.parse_args()
print(args)
dl = data_loader.Data_Loader({'dir_name': args.datapath, 'padid': args.padid})
all_samples = dl.item
print(all_samples.shape)
items = dl.item_dict
print("len(items)",len(items))
# Randomly shuffle data
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(all_samples)))
all_samples = all_samples[shuffle_indices]
# Split train/test set
dev_sample_index = -1 * int(args.tt_percentage * float(len(all_samples)))
train_set, valid_set = all_samples[:dev_sample_index], all_samples[dev_sample_index:]
random.seed(10)
ratio = args.data_ratio
train_set_len = len(train_set)
train_index_set = set(list(range(train_set_len)))
if ratio == 0.2:
train_ratio = int(ratio * float(train_set_len))
real_train_index_set = random.sample(list(train_index_set), train_ratio)
real_train_set = train_set[real_train_index_set]
train_set = np.array(real_train_set)
print("real train len", len(train_set))
elif ratio == 0.4:
last_ratio = ratio - 0.2
last_train_ratio = int(last_ratio * float(train_set_len))
last_train_index_set = random.sample(list(train_index_set), last_train_ratio)
last_train_set = train_set[last_train_index_set]
remain_train_index_set = train_index_set - set(last_train_index_set)
remain_len = len(remain_train_index_set)
new_train_index_set = random.sample(list(remain_train_index_set), int(1.0/4.0 * float(remain_len)))
new_train_set = train_set[new_train_index_set]
real_train_set = np.concatenate((last_train_set, new_train_set), axis=0)
train_set = np.array(real_train_set)
print("real train len", len(train_set))
elif ratio == 0.6:
last_last_ratio = ratio - 0.2 - 0.2
last_last_train_ratio = int(last_last_ratio * float(train_set_len))
last_last_train_index_set = random.sample(list(train_index_set), last_last_train_ratio)
last_last_train_set = train_set[last_last_train_index_set]
remain_train_index_set = train_index_set - set(last_last_train_index_set)
remain_len = len(remain_train_index_set)
last_train_index_set = random.sample(list(remain_train_index_set), int(1.0/4.0 * float(remain_len)))
last_train_set = train_set[last_train_index_set]
real_train_set = np.concatenate((last_last_train_set, last_train_set), axis=0)
remain_train_index_set = remain_train_index_set - set(last_train_index_set)
remain_len = len(remain_train_index_set)
new_train_index_set = random.sample(list(remain_train_index_set), int(1.0/3.0 * float(remain_len)))
new_train_set = train_set[new_train_index_set]
real_train_set = np.concatenate((real_train_set, new_train_set), axis=0)
train_set = np.array(real_train_set)
print("real train len", len(train_set))
elif ratio == 0.8:
last_last_ratio = ratio - 0.2 - 0.2 - 0.2
last_last_train_ratio = int(last_last_ratio * float(train_set_len))
last_last_train_index_set = random.sample(list(train_index_set), last_last_train_ratio)
last_last_train_set = train_set[last_last_train_index_set]
remain_train_index_set = train_index_set - set(last_last_train_index_set)
remain_len = len(remain_train_index_set)
last_train_index_set = random.sample(list(remain_train_index_set), int(1.0/4.0 * float(remain_len)))
last_train_set = train_set[last_train_index_set]
real_train_set = np.concatenate((last_last_train_set, last_train_set), axis=0)
remain_train_index_set = remain_train_index_set - set(last_train_index_set)
remain_len = len(remain_train_index_set)
new_train_index_set = random.sample(list(remain_train_index_set), int(1.0/3.0 * float(remain_len)))
new_train_set = train_set[new_train_index_set]
real_train_set = np.concatenate((real_train_set, new_train_set), axis=0)
remain_train_index_set = remain_train_index_set - set(new_train_index_set)
remain_len = len(remain_train_index_set)
new_train_index_set = random.sample(list(remain_train_index_set), int(1.0/2.0 * float(remain_len)))
new_train_set = train_set[new_train_index_set]
real_train_set = np.concatenate((real_train_set, new_train_set), axis=0)
train_set = np.array(real_train_set)
print("real train len", len(train_set))
elif ratio == 1:
train_set = np.array(train_set)
print("real train len", len(train_set))
else:
train_ratio = int(ratio * float(train_set_len))
real_train_index_set = random.sample(list(train_index_set), train_ratio)
real_train_set = train_set[real_train_index_set]
train_set = np.array(real_train_set)
print("real train len", len(train_set))
model_para = {
'item_size': len(items),
'dilated_channels': 64,
'dilations': [1,4]*args.dilation_count,
'step': args.step,
'kernel_size': 3,
'learning_rate': args.learning_rate,
'L2': args.L2,
'batch_size': 256,
'load_model': args.load_model,
'model_path': args.model_path,
'method': args.method
}
print(model_para)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
itemrec = generator_deep.NextItNet_Decoder(model_para)
itemrec.train_graph()
optimizer = tf.train.AdamOptimizer(model_para['learning_rate'], beta1=args.beta1).minimize(itemrec.loss)
itemrec.predict_graph(reuse=True)
gpu_options = tf.GPUOptions(allow_growth=True)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
saver = tf.train.Saver(max_to_keep=1)
init = tf.global_variables_initializer()
sess.run(init)
numIters = 1
max_mrr = 0
break_stick = 0
early_stop = 0
while(1):
if break_stick == 1:
break
batch_no = 0
batch_size = model_para['batch_size']
while (batch_no + 1) * batch_size < train_set.shape[0]:
start = time.time()
item_batch = train_set[batch_no * batch_size: (batch_no + 1) * batch_size, :]
_, loss = sess.run(
[optimizer, itemrec.loss],
feed_dict={
itemrec.itemseq_input: item_batch
})
end = time.time()
if numIters % args.eval_iter == 0:
print("-------------------------------------------------------train")
print("LOSS: {}\tBATCH_NO: {}\t STEP:{}\t total_batches:{}".format(
loss, batch_no, numIters, train_set.shape[0] / batch_size))
print("TIME FOR BATCH", end - start)
print("TIME FOR EPOCH (mins)", (end - start) * (train_set.shape[0] / batch_size) / 60.0)
batch_no += 1
if numIters % args.eval_iter == 0:
print("-------------------------------------------------------test")
batch_no_test = 0
batch_size_test = batch_size*1
curr_preds_5 = []
rec_preds_5 = []
ndcg_preds_5 = []
curr_preds_10 = []
rec_preds_10 = []
ndcg_preds_10 = []
while (batch_no_test + 1) * batch_size_test < valid_set.shape[0]:
item_batch = valid_set[batch_no_test * batch_size_test: (batch_no_test + 1) * batch_size_test, :]
[probs_10, probs_5] = sess.run(
[itemrec.top_10, itemrec.top_5],
feed_dict={
itemrec.input_predict: item_batch
})
for bi in range(batch_size_test):
pred_items_10 = probs_10[1][bi][-1]
pred_items_5 = probs_5[1][bi][-1]
true_item = item_batch[bi][-1]
predictmap_5 = {ch : i for i, ch in enumerate(pred_items_5)}
pred_items_10 = {ch: i for i, ch in enumerate(pred_items_10)}
rank_5 = predictmap_5.get(true_item)
rank_10 = pred_items_10.get(true_item)
if rank_5 == None:
curr_preds_5.append(0.0)
rec_preds_5.append(0.0)
ndcg_preds_5.append(0.0)
else:
MRR_5 = 1.0/(rank_5+1)
Rec_5 = 1.0
ndcg_5 = 1.0 / math.log(rank_5 + 2, 2)
curr_preds_5.append(MRR_5)
rec_preds_5.append(Rec_5)
ndcg_preds_5.append(ndcg_5)
if rank_10 == None:
curr_preds_10.append(0.0)
rec_preds_10.append(0.0)
ndcg_preds_10.append(0.0)
else:
MRR_10 = 1.0/(rank_10+1)
Rec_10 = 1.0
ndcg_10 = 1.0 / math.log(rank_10 + 2, 2)
curr_preds_10.append(MRR_10)
rec_preds_10.append(Rec_10)
ndcg_preds_10.append(ndcg_10)
batch_no_test += 1
mrr = sum(curr_preds_5) / float(len(curr_preds_5))
mrr_10 = sum(curr_preds_10) / float(len(curr_preds_10))
hit = sum(rec_preds_5) / float(len(rec_preds_5))
hit_10 = sum(rec_preds_10) / float(len(rec_preds_10))
ndcg = sum(ndcg_preds_5) / float(len(ndcg_preds_5))
ndcg_10 = sum(ndcg_preds_10) / float(len(ndcg_preds_10))
if mrr > max_mrr:
max_mrr = mrr
print("Save model! mrr_5:", mrr)
print("Save model! mrr_10:", mrr_10)
print("Save model! hit_5:", hit)
print("Save model! hit_10:", hit_10)
print("Save model! ndcg_5:", ndcg)
print("Save model! ndcg_10:", ndcg_10)
early_stop = 0
saver.save(sess, args.save_dir + "/{}_{}_{}_{}.ckpt".format(args.dilation_count, args.learning_rate, args.data_ratio, args.step))
else:
print("mrr_5:", mrr)
print("mrr_10:", mrr_10)
print("hit_5:", hit)
print("hit_10:", hit_10)
print("ndcg_5:", ndcg)
print("ndcg_10:", ndcg_10)
early_stop += 1
if numIters >= model_para['step']:
break_stick = 1
break
if early_stop >= args.early_stop:
break_stick = 1
print("early stop!")
break
numIters += 1
if __name__ == '__main__':
main()