-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
250 lines (203 loc) · 7.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch
from network import Network
from metric import valid
import numpy as np
import argparse
import random
from loss import Loss
from dataloader import load_data
import os
import torch.nn.functional as F
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import KMeans
Dataname = 'MNIST-USPS'
parser = argparse.ArgumentParser(description='train')
parser.add_argument('--dataset', default=Dataname)
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument("--temperature_f", default=0.5)
parser.add_argument("--temperature_l", default=0.5)
parser.add_argument("--alpha", default=0.3)
parser.add_argument("--beta", default=1.0)
parser.add_argument("--learning_rate", default=0.0003)
parser.add_argument("--weight_decay", default=0.)
parser.add_argument("--workers", default=8)
parser.add_argument("--mse_epochs", default=1)
parser.add_argument("--full_epochs", default=100)
parser.add_argument("--feature_dim", default=512)
parser.add_argument("--high_feature_dim", default=128)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.dataset == "MNIST-USPS":
args.full_epochs = 100
seed = 1
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
setup_seed(seed)
dataset, dims, view, data_size, class_num = load_data(args.dataset)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
)
def pretrain(epoch):
tot_loss = 0.
criterion = torch.nn.MSELoss()
for batch_idx, (xs, _, _) in enumerate(data_loader):
for v in range(view):
xs[v] = xs[v].to(device)
optimizer.zero_grad()
_, _, xrs, _ = model(xs)
loss_list = []
for v in range(view):
loss_list.append(criterion(xs[v], xrs[v]))
loss = sum(loss_list)
loss.backward()
optimizer.step()
tot_loss += loss.item()
print('Epoch {}'.format(epoch), 'Loss:{:.6f}'.format(tot_loss / len(data_loader)))
def full_train(epoch, pro, alpha, beta):
tot_loss = 0.
rec_loss = 0.
sem_loss = 0.
wcl_loss = 0.
mes = torch.nn.MSELoss()
ce = torch.nn.CrossEntropyLoss()
center = pro
for batch_idx, (xs, label, _) in enumerate(data_loader):
for v in range(view):
xs[v] = xs[v].to(device)
optimizer.zero_grad()
hs, qs, xrs, zs = model(xs)
d_list = []
s_list = []
k_list = []
wd_list = []
e_list = []
for v in range(view):
cos_d = consine_similarity(hs[v], center)
# using optimal transport to align samples with joint clusters
T = sinkhorn(cos_d.detach(), epsilon=0.05, sinkhorn_iterations=100)
s = T / T.sum(dim=1, keepdim=True)
k, index = torch.max(s, dim=1)
with torch.no_grad():
wd, e = w_dist(cos_d.cuda(), T.cuda(), center.shape[0])
s_list.append(s)
wd_list.append(wd)
e_list.append(e)
k_list.append(k.cuda())
d_list.append(cos_d)
loss_list = []
rec_loss_list = []
sem_loss_list = []
wcl_loss_list = []
if batch_idx == 0:
a1 = xrs[0]
a2 = xrs[1]
if batch_idx > 0:
a1 = torch.cat((a1,xrs[0]),dim=0)
a2 = torch.cat((a2,xrs[1]),dim=0)
for v in range(view):
rec_loss_list.append(mes(xs[v], xrs[v]))
sem_loss_list.append(alpha * F.kl_div(qs[v], s_list[v]))
sem_loss_list.append(alpha * (-wd_list[v] - e_list[v]))
for w in range(v+1, view):
sem_loss_list.append(alpha * criterion.forward_label(qs[v], qs[w]))
wcl_loss_list.append(beta * criterion.forward_feature(hs[v], hs[w], k_list[v], k_list[w]))
r_loss = sum(rec_loss_list)
s_loss = sum(sem_loss_list)
w_loss = sum(wcl_loss_list)
loss = r_loss+ s_loss + w_loss
loss.backward()
optimizer.step()
tot_loss += loss.item()
rec_loss += r_loss
sem_loss += s_loss
wcl_loss += w_loss
print('Epoch {}'.format(epoch), 'Loss:{:.6f}'.format(tot_loss/len(data_loader)))
return tot_loss/len(data_loader), rec_loss/len(data_loader), sem_loss/len(data_loader), wcl_loss/len(data_loader)
def w_dist(cos_dist, T, m, eps=1):
temp_1 = torch.mm(cos_dist.t(), T)
temp_2 = eps * torch.mm(T.t(), torch.log(T))
a = torch.eye(m).cuda()
b = a * temp_1
c = a * temp_2
distance = torch.sum(b)
entropy = torch.sum(c)
return distance, entropy
def prototype(model, device):
loader = torch.utils.data.DataLoader(
dataset,
batch_size=data_size,
shuffle=False,
)
model.eval()
scaler = MinMaxScaler()
for step, (xs, y, _) in enumerate(loader):
for v in range(view):
xs[v] = xs[v].to(device)
with torch.no_grad():
hs, _, _, _ = model.forward(xs)
hs_cat = torch.stack(hs, dim=0)
hs_fusion = torch.sum(hs_cat, dim=0) / view
kmeans = KMeans(n_clusters=class_num, n_init=100).fit(hs_fusion.cpu().detach().numpy())
return kmeans.cluster_centers_
def consine_similarity(Z, center):
similarity = torch.mm(Z.to('cpu').detach(),(torch.from_numpy(center).T))
return similarity
def sinkhorn(out, epsilon, sinkhorn_iterations):
"""
from https://github.com/facebookresearch/swav
"""
Q = torch.exp(out / epsilon).t() # Q is K-by-B for consistency with notations from our paper
B = Q.shape[1] # number of samples to assign
K = Q.shape[0] # how many prototypes
# make the matrix sums to 1
sum_Q = torch.sum(Q)
Q /= sum_Q
for it in range(sinkhorn_iterations):
# normalize each row: total weight per prototype must be 1/K
sum_of_rows = torch.sum(Q, dim=1, keepdim=True)
Q /= sum_of_rows
Q /= K
# normalize each column: total weight per sample must be 1/B
Q /= torch.sum(Q, dim=0, keepdim=True)
Q /= B
# Q *= B # the colomns must sum to 1 so that Q is an assignment
return Q.t()
accs = []
nmis = []
purs = []
if not os.path.exists('./models'):
os.makedirs('./models')
T = 1
for i in range(T):
print("ROUND:{}".format(i+1))
model = Network(view, dims, args.feature_dim, args.high_feature_dim, class_num, device)
print(model)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
criterion = Loss(args.batch_size, class_num, args.temperature_f, args.temperature_l, device).to(device)
epoch = 1
best_acc = 0
best_nmi = 0
best_ari = 0
best_pur = 0
while epoch <= args.mse_epochs:
pretrain(epoch)
epoch += 1
while epoch <= args.mse_epochs + args.full_epochs:
pro = prototype(model, device)
loss_tot, loss_rec, loss_sem, loss_wcl = full_train(epoch, pro, args.alpha, args.beta)
if epoch == args.mse_epochs + args.full_epochs:
acc, nmi, ari, pur = valid(model, device, dataset, view, data_size, class_num)
accs.append(acc)
nmis.append(nmi)
purs.append(pur)
epoch += 1
state = model.state_dict()
torch.save(state, './models/' + args.dataset + '.pth')