-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathvideo_demo.py
154 lines (124 loc) · 4.91 KB
/
video_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import sys
import os
import argparse
import time
import cjson
from math import ceil
sys.path.append(os.path.abspath("caffe-fm/python"))
sys.path.append(os.path.abspath("python_layers"))
sys.path.append(os.getcwd())
import caffe
from IPython import embed
import config
import numpy as np
import setproctitle
import cv2
from alchemy.utils.image import resize_blob, visualize_masks
from alchemy.utils.timer import Timer
from alchemy.utils.mask import encode, decode, crop, iou
from alchemy.utils.load_config import load_config
from utils import gen_masks
'''
python video_demo.py gpu_id model input_video output_video
'''
COLORS = [0xE6E2AF, 0xA7A37E]
'''
, 0xDC3522, 0x046380]
0x468966, 0xB64926, 0x8E2800, 0xFFE11A,
0xFF6138, 0x193441, 0xFF9800, 0x7D9100,
0x1F8A70, 0x7D8A2E, 0x2E0927, 0xACCFCC,
0x644D52, 0xA49A87, 0x04BFBF, 0xCDE855,
0xF2836B, 0x88A825, 0xFF358B, 0x01B0F0,
0xAEEE00, 0x334D5C, 0x45B29D, 0xEFC94C,
0xE27A3F, 0xDF5A49]
'''
def parse_args():
parser = argparse.ArgumentParser('process video')
parser.add_argument('gpu_id', type=int)
parser.add_argument('model', type=str)
parser.add_argument('input_video', type=str)
parser.add_argument('output_video', type=str)
parser.add_argument('--init_weights', type=str,
default='', dest='init_weights')
parser.add_argument('--threshold', type=float,
default=0.90, dest='threshold')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
# video reader and writer
input_cap = cv2.VideoCapture(args.input_video)
(major, minor, _) = cv2.__version__.split('.')
if (float(major) < 3):
fps, w, h = cv2.cv.CV_CAP_PROP_FPS, cv2.cv.CV_CAP_PROP_FRAME_WIDTH, cv2.cv.CV_CAP_PROP_FRAME_HEIGHT
else:
fps, w, h = cv2.CAP_PROP_FPS, cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT
fps, w, h = input_cap.get(fps), int(input_cap.get(w)), int(input_cap.get(h))
fourcc = cv2.VideoWriter_fourcc(*"XVID")
output_cap = cv2.VideoWriter(args.output_video, fourcc, fps/4, (w, h))
oh, ow = h, w
# caffe setup
caffe.set_mode_gpu()
caffe.set_device(int(args.gpu_id))
net = caffe.Net(
'models/' + args.model + '.test.prototxt',
'params/' + args.init_weights,
caffe.TEST)
# load config
if os.path.exists("configs/%s.json" % args.model):
load_config("configs/%s.json" % args.model)
else:
print "Specified config does not exists, use the default config..."
im_scale = config.TEST_SCALE * 1.0 / max(h, w)
while input_cap.isOpened():
ret, frame = input_cap.read()
try:
input_blob = frame[:,:,::-1] - config.RGB_MEAN
input_blob = input_blob.transpose((2, 0, 1))
ih, iw = int(oh * im_scale), int(ow * im_scale)
ih, iw = ih - ih % 4, iw - iw % 4
input_blob = resize_blob(input_blob, dest_shape=(ih, iw))
input_blob = input_blob[np.newaxis, ...]
image = frame.astype(np.uint8)
# generate mask
ret_masks, ret_scores = gen_masks(net, input_blob, config, dest_shape=(oh, ow))
ret = [ {'mask': ret_masks[i], 'score': ret_scores[i]} for i in range(len(ret_masks)) ]
# sort
ret.sort(key=lambda item: item['score'], reverse=True)
ret_masks = np.array([item['mask'] for item in ret])
ret_scores = np.array([item['score'] for item in ret])
# nms
encoded_masks = encode(ret_masks)
reserved = np.ones((len(ret_masks)))
for i in range(len(reserved)):
if ret_scores[i] < args.threshold:
reserved[i] = 0
continue
if reserved[i]:
for j in range(i + 1, len(reserved)):
if reserved[j] and iou(encoded_masks[i], encoded_masks[j], [False]) > 0.5:
reserved[j] = 0
image = image.astype(np.float)
# color
for _ in range(len(reserved)):
if reserved[_]:
mask = ret_masks[_]
mask[mask == 1] = 0.3
mask[mask == 0] = 1
color = COLORS[_ % len(COLORS)]
for k in range(3):
image[:,:,k] = image[:,:,k] * mask
mask[mask == 1] = 0
mask[mask > 0] = 0.7
for k in range(3):
image[:,:,k] += mask * (color & 0xff)
color >>= 8;
image = image.astype(np.uint8)
cv2.imshow('image', image)
cv2.waitKey(10)
output_cap.write(image)
except Exception:
break
cv2.destroyAllWindows()
input_cap.release()
output_cap.release()