-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathdemo.py
150 lines (122 loc) · 4.59 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import sys
import os
import argparse
import time
import cjson
from math import ceil
import numpy as np
from IPython import embed
import setproctitle
import cv2
sys.path.append(os.path.abspath("caffe-fm/python"))
sys.path.append(os.path.abspath("python_layers"))
sys.path.append(os.getcwd())
import caffe
from alchemy.utils.image import resize_blob, visualize_masks
from alchemy.utils.timer import Timer
from alchemy.utils.mask import encode, crop
from alchemy.utils.load_config import load_config
import config
'''
python demo.py gpu_id model_prototxt [--debug=False] [--init_weights=*.caffemodel] [--display=mask] [--start_from=0] [--start_scale=0]
'''
def parse_args():
parser = argparse.ArgumentParser('train net')
parser.add_argument('gpu_id', type=int)
parser.add_argument('model_prototxt', type=str)
parser.add_argument('--debug', dest='debug', type=bool, default=False)
parser.add_argument('--init_weights', dest='init_weights', type=str,
default=None)
parser.add_argument('--display', dest='display', type=str,
default='mask')
parser.add_argument('--start_from', dest='start_from', type=int,
default=0)
parser.add_argument('--start_scale', dest='start_scale', type=int,
default=0)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
caffe.set_mode_gpu()
caffe.set_device(int(args.gpu_id))
setproctitle.setproctitle(args.model_prototxt)
net = caffe.Net(
'models/' + args.model_prototxt + ".test.prototxt",
'params/' + args.init_weights,
caffe.TEST)
if os.path.exists("configs/%s.json" % args.model_prototxt):
load_config("configs/%s.json" % args.model_prototxt)
else:
print "Specified config does not exists, use the default config..."
config.ANNOTATION_TYPE = "val2014"
config.IMAGE_SET = "val2014"
from spiders.coco_ssm_spider import COCOSSMDemoSpider
spider = COCOSSMDemoSpider()
ds = spider.dataset
i = 0
while i < args.start_from:
spider.next_idx()
i += 1
timer = Timer()
for i in range(i, len(ds)):
if len(ds[i].imgToAnns) == 0:
continue
else:
image_id = ds[i].imgToAnns[0]['image_id']
spider.fetch()
img = spider.img_blob
oh, ow = img.shape[2:]
net.blobs['data'].reshape(*img.shape)
net.blobs['data'].data[...] = img
timer.tic()
net.forward()
print timer.tac()
stride = 16
h, w = (oh/stride) + (oh%stride > 0), (ow/stride) + (ow%stride > 0)
ratio = 16
ratios = spider.RFs
try:
ratios = config.TEST_RFs
except Exception:
pass
scales = []
for rf in ratios:
scales.append(((oh/rf)+(oh%rf>0), (ow/rf)+(ow%rf>0)))
order = net.blobs['top_k'].data.flatten()
embed()
for _ in range(len(net.blobs['top_k'].data[:,0,0,0])):
bid = int(order[_])
print net.blobs['objn'].data[bid]
print net.blobs['objn'].data[bid].argmax()
scale_idx = 0
h, w = scales[scale_idx]
ceiling = (h + 1) * (w + 1)
scale_idx = 0
while bid >= ceiling:
scale_idx += 1
h, w = scales[scale_idx]
bid -= ceiling
ceiling = (h + 1) * (w + 1)
stride = ratios[scale_idx]
if stride < args.start_scale:
continue
print 'stride: ', stride
x = bid / (w + 1)
y = bid % (w + 1)
SLIDING_WINDOW_SIZE = config.SLIDING_WINDOW_SIZE
xb, xe = int(round((x - SLIDING_WINDOW_SIZE/2) * stride)), int(round((x + SLIDING_WINDOW_SIZE/2) * stride))
yb, ye = int(round((y - SLIDING_WINDOW_SIZE/2) * stride)), int(round((y + SLIDING_WINDOW_SIZE/2) * stride))
size = xe - xb, ye - yb
if args.display == 'mask':
masks = net.blobs['masks'].data[_]
masks[masks > 0.2] = 1
masks[masks <= 0.2] = 0
else:
masks = net.blobs['atts'].data[_]
masks = resize_blob(masks, size, method=cv2.INTER_LANCZOS4)
masks = crop(masks, (xb, xe, yb, ye), (oh, ow))
RGB_MEAN = config.RGB_MEAN
img = net.blobs['data'].data[0, :, max(xb, 0): min(oh, xe), max(yb, 0): min(ow, ye)].copy()
img = img.transpose((1, 2, 0))
img += RGB_MEAN
visualize_masks(img, masks)