You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
PyTorch version: 2.3.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.0
Libc version: glibc-2.35
Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-3.10.0-1062.9.1.el7.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A800-SXM4-80GB
GPU 1: NVIDIA A800-SXM4-80GB
GPU 2: NVIDIA A800-SXM4-80GB
GPU 3: NVIDIA A800-SXM4-80GB
GPU 4: NVIDIA A800-SXM4-80GB
GPU 5: NVIDIA A800-SXM4-80GB
GPU 6: NVIDIA A800-SXM4-80GB
GPU 7: NVIDIA A800-SXM4-80GB
Nvidia driver version: 525.85.12
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Vendor ID: GenuineIntel
BIOS Vendor ID: Intel(R) Corporation
Model name: Intel(R) Xeon(R) Platinum 8350C CPU @ 2.60GHz
BIOS Model name: Intel(R) Xeon(R) Platinum 8350C CPU @ 2.60GHz
CPU family: 6
Model: 106
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
Stepping: 6
Frequency boost: enabled
CPU max MHz: 3500.0000
CPU min MHz: 800.0000
BogoMIPS: 5200.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 invpcid_single intel_pt ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq md_clear pconfig spec_ctrl intel_stibp flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 3 MiB (64 instances)
L1i cache: 2 MiB (64 instances)
L2 cache: 80 MiB (64 instances)
L3 cache: 96 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-31,64-95
NUMA node1 CPU(s): 32-63,96-127
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; Load fences, usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Vulnerable, IBPB
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.24.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] onnx==1.16.0
[pip3] optree==0.11.0
[pip3] pytorch-quantization==2.1.2
[pip3] pytorch-triton==3.0.0+a9bc1a364
[pip3] torch==2.3.0
[pip3] torch-tensorrt==2.3.0a0
[pip3] torchdata==0.7.1a0
[pip3] torchtext==0.17.0a0
[pip3] torchvision==0.18.0
[pip3] transformers==4.42.3
[pip3] triton==2.3.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.1
vLLM Build Flags:
CUDA Archs: 5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 CPU Affinity NUMA Affinity
GPU0 X NV8 NV8 NV8 NV8 NV8 NV8 NV8 PXB PXB NODE NODE SYS SYS SYS SYS 0-31,64-95 0
GPU1 NV8 X NV8 NV8 NV8 NV8 NV8 NV8 PXB PXB NODE NODE SYS SYS SYS SYS 0-31,64-95 0
GPU2 NV8 NV8 X NV8 NV8 NV8 NV8 NV8 NODE NODE PXB PXB SYS SYS SYS SYS 0-31,64-95 0
GPU3 NV8 NV8 NV8 X NV8 NV8 NV8 NV8 NODE NODE PXB PXB SYS SYS SYS SYS 0-31,64-95 0
GPU4 NV8 NV8 NV8 NV8 X NV8 NV8 NV8 SYS SYS SYS SYS PXB PXB NODE NODE 32-63,96-127 1
GPU5 NV8 NV8 NV8 NV8 NV8 X NV8 NV8 SYS SYS SYS SYS PXB PXB NODE NODE 32-63,96-127 1
GPU6 NV8 NV8 NV8 NV8 NV8 NV8 X NV8 SYS SYS SYS SYS NODE NODE PXB PXB 32-63,96-127 1
GPU7 NV8 NV8 NV8 NV8 NV8 NV8 NV8 X SYS SYS SYS SYS NODE NODE PXB PXB 32-63,96-127 1
NIC0 PXB PXB NODE NODE SYS SYS SYS SYS X PIX NODE NODE SYS SYS SYS SYS
NIC1 PXB PXB NODE NODE SYS SYS SYS SYS PIX X NODE NODE SYS SYS SYS SYS
NIC2 NODE NODE PXB PXB SYS SYS SYS SYS NODE NODE X PIX SYS SYS SYS SYS
NIC3 NODE NODE PXB PXB SYS SYS SYS SYS NODE NODE PIX X SYS SYS SYS SYS
NIC4 SYS SYS SYS SYS PXB PXB NODE NODE SYS SYS SYS SYS X PIX NODE NODE
NIC5 SYS SYS SYS SYS PXB PXB NODE NODE SYS SYS SYS SYS PIX X NODE NODE
NIC6 SYS SYS SYS SYS NODE NODE PXB PXB SYS SYS SYS SYS NODE NODE X PIX
NIC7 SYS SYS SYS SYS NODE NODE PXB PXB SYS SYS SYS SYS NODE NODE PIX X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
🐛 Describe the bug
I am loading deepseek-v2 using fp8 quant. It seems that torch does not support fp8 cat. Maybe I should report this issue in pytorch, but I still want you gays to be informed.
fromauto_fp8importAutoFP8ForCausalLM, BaseQuantizeConfigpretrained_model_dir="DeepSeek-Coder-V2-Instruct"quantized_model_dir="DeepSeek-Coder-V2-Instruct-FP8-Dynamic"# Define quantization config with static activation scalesquantize_config=BaseQuantizeConfig(quant_method="fp8", activation_scheme="dynamic")
# For dynamic activation scales, there is no need for calbration examplesexamples= []
# Load the model, quantize, and save checkpointmodel=AutoFP8ForCausalLM.from_pretrained(pretrained_model_dir, quantize_config, trust_remote_code=True, device_map="cpu")
model.quantize(examples)
model.save_quantized(quantized_model_dir)
fromvllmimportLLM, SamplingParamsllm=LLM(quantized_model_dir, tensor_parallel_size=8, trust_remote_code=True,
max_model_len=8192,
enforce_eager=True,
quantization="fp8",
)
[rank0]: Traceback (most recent call last):
[rank0]: File "/home/work/serve/deepseekv2_test/deepseekv2_eval.py", line 62, in<module>
[rank0]: llm = LLM(args.model, tensor_parallel_size=args.tensor_parallel_size, trust_remote_code=True,
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/entrypoints/llm.py", line 149, in __init__
[rank0]: self.llm_engine = LLMEngine.from_engine_args(
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py", line 414, in from_engine_args
[rank0]: engine = cls(
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py", line 243, in __init__
[rank0]: self.model_executor = executor_class(
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/executor/distributed_gpu_executor.py", line 25, in __init__
[rank0]: super().__init__(*args, **kwargs)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/executor/executor_base.py", line 42, in __init__
[rank0]: self._init_executor()
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/executor/multiproc_gpu_executor.py", line 85, in _init_executor
[rank0]: self._run_workers("load_model",
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/executor/multiproc_gpu_executor.py", line 136, in _run_workers
[rank0]: driver_worker_output = driver_worker_method(*args, **kwargs)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/worker/worker.py", line 133, in load_model
[rank0]: self.model_runner.load_model()
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/worker/model_runner.py", line 243, in load_model
[rank0]: self.model = get_model(
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/model_loader/__init__.py", line 21, in get_model
[rank0]: return loader.load_model(model_config=model_config,
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/model_loader/loader.py", line 267, in load_model
[rank0]: model = _initialize_model(model_config, self.load_config,
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/model_loader/loader.py", line 104, in _initialize_model
[rank0]: return model_class(config=model_config.hf_config,
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/deepseek_v2.py", line 467, in __init__
[rank0]: self.model = DeepseekV2Model(config, cache_config, quant_config)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/deepseek_v2.py", line 429, in __init__
[rank0]: self.layers = nn.ModuleList([
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/deepseek_v2.py", line 430, in<listcomp>
[rank0]: DeepseekV2DecoderLayer(config,
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/deepseek_v2.py", line 369, in __init__
[rank0]: self.mlp = DeepseekV2MoE(config=config, quant_config=quant_config)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/deepseek_v2.py", line 113, in __init__
[rank0]: self.pack_params()
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/deepseek_v2.py", line 137, in pack_params
[rank0]: self.w1 = torch._utils._flatten_dense_tensors(w1)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/torch/_utils.py", line 509, in _flatten_dense_tensors
[rank0]: return torch._C._nn.flatten_dense_tensors(tensors)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py", line 78, in __torch_function__
[rank0]: return func(*args, **kwargs)
[rank0]: RuntimeError: "cat_cuda" not implemented for'Float8_e4m3fn'
The text was updated successfully, but these errors were encountered:
@LSC527 The issue is that DeepSeek-V2 MoE doesn't support FP8 yet, and FP8 MoE is not supported on Ampere GPUs. You need Ada Lovelace or Hopper GPUs for FP8 hardware support.
This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!
Your current environment
🐛 Describe the bug
I am loading deepseek-v2 using fp8 quant. It seems that torch does not support fp8 cat. Maybe I should report this issue in pytorch, but I still want you gays to be informed.
The text was updated successfully, but these errors were encountered: