Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Use 3 node with 8*H100 to serve Deepseek R1 model, error is pthread_create failed: Resource temporarily unavailable #13354

Open
1 task done
yeqiugt opened this issue Feb 16, 2025 · 0 comments
Labels
bug Something isn't working

Comments

@yeqiugt
Copy link

yeqiugt commented Feb 16, 2025

Your current environment

The output of `python collect_env.py`
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.31.4
Libc version: glibc-2.35

Python version: 3.12.8 (main, Dec  4 2024, 08:54:12) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-4.18.0-553.34.1.el8_10.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
GPU 4: NVIDIA H100 80GB HBM3
GPU 5: NVIDIA H100 80GB HBM3
GPU 6: NVIDIA H100 80GB HBM3
GPU 7: NVIDIA H100 80GB HBM3

Nvidia driver version: 570.86.15
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        52 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               192
On-line CPU(s) list:                  0-191
Vendor ID:                            GenuineIntel
BIOS Vendor ID:                       Intel(R) Corporation
Model name:                           INTEL(R) XEON(R) PLATINUM 8558
BIOS Model name:                      INTEL(R) XEON(R) PLATINUM 8558
CPU family:                           6
Model:                                207
Thread(s) per core:                   2
Core(s) per socket:                   48
Socket(s):                            2
Stepping:                             2
CPU max MHz:                          4000.0000
CPU min MHz:                          800.0000
BogoMIPS:                             4200.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Virtualization:                       VT-x
L1d cache:                            4.5 MiB (96 instances)
L1i cache:                            3 MiB (96 instances)
L2 cache:                             192 MiB (96 instances)
L3 cache:                             520 MiB (2 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0-47,96-143
NUMA node1 CPU(s):                    48-95,144-191
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.1
[pip3] torch==2.5.1
[pip3] torchaudio==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.48.2
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    NIC2    NIC3    NIC4    NIC5    NIC6    NIC7    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV18    NV18    NV18    NV18    NV18    NV18    NV18    SYS     SYS     NODE    SYS     NODE    NODE    SYS     PIX     0-47,96-143     0        N/A
GPU1    NV18     X      NV18    NV18    NV18    NV18    NV18    NV18    SYS     SYS     PIX     SYS     NODE    NODE    SYS     NODE    0-47,96-143     0        N/A
GPU2    NV18    NV18     X      NV18    NV18    NV18    NV18    NV18    SYS     SYS     NODE    SYS     NODE    PIX     SYS     NODE    0-47,96-143     0        N/A
GPU3    NV18    NV18    NV18     X      NV18    NV18    NV18    NV18    SYS     SYS     NODE    SYS     PIX     NODE    SYS     NODE    0-47,96-143     0        N/A
GPU4    NV18    NV18    NV18    NV18     X      NV18    NV18    NV18    NODE    PIX     SYS     NODE    SYS     SYS     NODE    SYS     48-95,144-191   1        N/A
GPU5    NV18    NV18    NV18    NV18    NV18     X      NV18    NV18    PIX     NODE    SYS     NODE    SYS     SYS     NODE    SYS     48-95,144-191   1        N/A
GPU6    NV18    NV18    NV18    NV18    NV18    NV18     X      NV18    NODE    NODE    SYS     PIX     SYS     SYS     NODE    SYS     48-95,144-191   1        N/A
GPU7    NV18    NV18    NV18    NV18    NV18    NV18    NV18     X      NODE    NODE    SYS     NODE    SYS     SYS     PIX     SYS     48-95,144-191   1        N/A
NIC0    SYS     SYS     SYS     SYS     NODE    PIX     NODE    NODE     X      NODE    SYS     NODE    SYS     SYS     NODE    SYS
NIC1    SYS     SYS     SYS     SYS     PIX     NODE    NODE    NODE    NODE     X      SYS     NODE    SYS     SYS     NODE    SYS
NIC2    NODE    PIX     NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS      X      SYS     NODE    NODE    SYS     NODE
NIC3    SYS     SYS     SYS     SYS     NODE    NODE    PIX     NODE    NODE    NODE    SYS      X      SYS     SYS     NODE    SYS
NIC4    NODE    NODE    NODE    PIX     SYS     SYS     SYS     SYS     SYS     SYS     NODE    SYS      X      NODE    SYS     NODE
NIC5    NODE    NODE    PIX     NODE    SYS     SYS     SYS     SYS     SYS     SYS     NODE    SYS     NODE     X      SYS     NODE
NIC6    SYS     SYS     SYS     SYS     NODE    NODE    NODE    PIX     NODE    NODE    SYS     NODE    SYS     SYS      X      SYS
NIC7    PIX     NODE    NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS     NODE    SYS     NODE    NODE    SYS      X

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_15
  NIC1: mlx5_22
  NIC2: mlx5_33
  NIC3: mlx5_68
  NIC4: mlx5_69
  NIC5: mlx5_71
  NIC6: mlx5_105
  NIC7: mlx5_116

NVIDIA_VISIBLE_DEVICES=GPU-ae1fd140-2604-6bd1-7242-d537a15f3075,GPU-43f503ce-e071-34f7-4dd0-3d0f2e20b736,GPU-fd8631ec-9bdc-10b5-eee0-08f37ffba773,GPU-d1862697-0e1c-d493-d5bf-19a2c65acfbe,GPU-5e4f1b18-8a72-ddc0-1ffd-ac04ea374912,GPU-88f7d027-17e5-fcf4-629c-6ccff26e3ab0,GPU-51a0e80a-9a9d-8536-d590-04c31d03ed17,GPU-a07269f5-43a7-b0d1-15b0-73f6c3baa545
NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
NCCL_VERSION=2.17.1-1
NCCL_SOCKET_IFNAME=eth0
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NCCL_DEBUG=TRACE
NVIDIA_PRODUCT_NAME=CUDA
VLLM_USAGE_SOURCE=production-docker-image
NVIDIA_CUDA_END_OF_LIFE=1
CUDA_VERSION=12.1.0
LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/cv2/../../lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NCCL_IB_DISABLE=0
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

root@vllm-worker-6dd66f997f-pj6g4:~# ulimit -a
real-time non-blocking time (microseconds, -R) unlimited
core file size (blocks, -c) unlimited
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 8253291
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1048576
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) unlimited
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

🐛 Describe the bug

root@vllm-worker-6dd66f997f-pj6g4:~# ulimit -a
real-time non-blocking time (microseconds, -R) unlimited
core file size (blocks, -c) unlimited
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 8253291
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1048576
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) unlimited
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

root@vllm-worker-6dd66f997f-pj6g4:/vllm-workspace# vllm serve /vllm-workspace/deepseek-r1 --served-model-name deepseek-r1 --enable-prefix-caching --max-model-len 4096 --gpu-memory-utilization 0.95 --tensor-parallel-size 8 --pipeline-parallel-size 2 --enable-chunked-prefill --trust-remote-code --port 8000

INFO 02-16 02:29:16 init.py:183] Automatically detected platform cuda.
INFO 02-16 02:29:16 api_server.py:838] vLLM API server version 0.7.1
INFO 02-16 02:29:16 api_server.py:839] args: Namespace(subparser='serve', model_tag='/vllm-workspace/deepseek-r1', config='', host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=[''], allowed_methods=[''], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, enable_reasoning=False, reasoning_parser=None, tool_call_parser=None, tool_parser_plugin='', model='/vllm-workspace/deepseek-r1', task='auto', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=True, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=4096, guided_decoding_backend='xgrammar', logits_processor_pattern=None, distributed_executor_backend=None, pipeline_parallel_size=2, tensor_parallel_size=8, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=None, enable_prefix_caching=True, disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.95, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=True, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=['deepseek-r1'], qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', generation_config=None, override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, dispatch_function=<function serve at 0x7f1254b0d3a0>)
INFO 02-16 02:29:16 config.py:135] Replacing legacy 'type' key with 'rope_type'
INFO 02-16 02:29:20 config.py:526] This model supports multiple tasks: {'score', 'reward', 'generate', 'classify', 'embed'}. Defaulting to 'generate'.
INFO 02-16 02:29:21 config.py:1383] Defaulting to use ray for distributed inference
INFO 02-16 02:29:21 config.py:1538] Chunked prefill is enabled with max_num_batched_tokens=2048.
WARNING 02-16 02:29:21 config.py:653] Async output processing can not be enabled with pipeline parallel
WARNING 02-16 02:29:21 fp8.py:50] Detected fp8 checkpoint. Please note that the format is experimental and subject to change.
INFO 02-16 02:29:21 config.py:3257] MLA is enabled; forcing chunked prefill and prefix caching to be disabled.
INFO 02-16 02:29:21 llm_engine.py:232] Initializing a V0 LLM engine (v0.7.1) with config: model='/vllm-workspace/deepseek-r1', speculative_config=None, tokenizer='/vllm-workspace/deepseek-r1', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.bfloat16, max_seq_len=4096, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=8, pipeline_parallel_size=2, disable_custom_all_reduce=False, quantization=fp8, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=deepseek-r1, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=False, chunked_prefill_enabled=False, use_async_output_proc=False, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"splitting_ops":[],"compile_sizes":[],"cudagraph_capture_sizes":[256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":256}, use_cached_outputs=False,
2025-02-16 02:29:21,888 INFO worker.py:1654 -- Connecting to existing Ray cluster at address: vllm-head-service.maas.svc.cluster.local:6379...
2025-02-16 02:29:21,931 INFO worker.py:1832 -- Connected to Ray cluster. View the dashboard at http://10.233.92.44:8265/
(bundle_reservation_check_func pid=630) [2025-02-16 02:29:23,228 E 630 630] logging.cc:108: Unhandled exception: N5boost10wrapexceptINS_6system12system_errorEEE. what(): thread: Resource temporarily unavailable [system:11]
(bundle_reservation_check_func pid=630) [2025-02-16 02:29:23,258 E 630 630] logging.cc:115: Stack trace:
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0x11f785a) [0x7fcfdbab985a] ray::operator<<()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0x11fadf2) [0x7fcfdbabcdf2] ray::TerminateHandler()
(bundle_reservation_check_func pid=630) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xae20c) [0x7fcfda73a20c]
(bundle_reservation_check_func pid=630) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xae277) [0x7fcfda73a277]
(bundle_reservation_check_func pid=630) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xae4d8) [0x7fcfda73a4d8]
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0x6b74c0) [0x7fcfdaf794c0] boost::throw_exception<>()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0x1271c2b) [0x7fcfdbb33c2b] boost::asio::detail::do_throw_error()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0x127264b) [0x7fcfdbb3464b] boost::asio::detail::posix_thread::start_thread()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0x1272aac) [0x7fcfdbb34aac] boost::asio::thread_pool::thread_pool()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0xc87a14) [0x7fcfdb549a14] ray::rpc::(anonymous namespace)::_GetServerCallExecutor()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(_ZN3ray3rpc21GetServerCallExecutorEv+0x9) [0x7fcfdb549aa9] ray::rpc::GetServerCallExecutor()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(ZNSt17_Function_handlerIFvN3ray6StatusESt8functionIFvvEES4_EZNS0_3rpc14ServerCallImplINS6_24CoreWorkerServiceHandlerENS6_15PushTaskRequestENS6_13PushTaskReplyELNS6_8AuthTypeE0EE17HandleRequestImplEbEUlS1_S4_S4_E0_E9_M_invokeERKSt9_Any_dataOS1_OS4_SJ+0x12b) [0x7fcfdb1e141b] std::_Function_handler<>::_M_invoke()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0x967e36) [0x7fcfdb229e36] ray::core::TaskReceiver::HandleTask()::{lambda()https://github.com/vllm-project/vllm/pull/1}::operator()()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0x968e5a) [0x7fcfdb22ae5a] std::_Function_handler<>::_M_invoke()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0x970192) [0x7fcfdb232192] ray::core::InboundRequest::Accept()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0x98c7cd) [0x7fcfdb24e7cd] ray::core::NormalSchedulingQueue::ScheduleRequests()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0xc9e728) [0x7fcfdb560728] EventTracker::RecordExecution()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0xc996fe) [0x7fcfdb55b6fe] std::_Function_handler<>::_M_invoke()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0xc99b76) [0x7fcfdb55bb76] boost::asio::detail::completion_handler<>::do_complete()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0x126f2bb) [0x7fcfdbb312bb] boost::asio::detail::scheduler::do_run_one()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0x1270c39) [0x7fcfdbb32c39] boost::asio::detail::scheduler::run()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0x1271342) [0x7fcfdbb33342] boost::asio::io_context::run()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(_ZN3ray4core10CoreWorker20RunTaskExecutionLoopEv+0x117) [0x7fcfdb171407] ray::core::CoreWorker::RunTaskExecutionLoop()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(_ZN3ray4core21CoreWorkerProcessImpl26RunWorkerTaskExecutionLoopEv+0x41) [0x7fcfdb22e971] ray::core::CoreWorkerProcessImpl::RunWorkerTaskExecutionLoop()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(_ZN3ray4core17CoreWorkerProcess20RunTaskExecutionLoopEv+0x1d) [0x7fcfdb22eb8d] ray::core::CoreWorkerProcess::RunTaskExecutionLoop()
(bundle_reservation_check_func pid=630) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0x725467) [0x7fcfdafe7467] __pyx_pw_3ray_7_raylet_10CoreWorker_5run_task_loop()
(bundle_reservation_check_func pid=630) ray::IDLE() [0x582f0c]
(bundle_reservation_check_func pid=630) ray::IDLE(PyObject_Vectorcall+0x36) [0x56ca46] PyObject_Vectorcall
(bundle_reservation_check_func pid=630) ray::IDLE(_PyEval_EvalFrameDefault+0x705) [0x553785] _PyEval_EvalFrameDefault
(bundle_reservation_check_func pid=630) ray::IDLE(PyEval_EvalCode+0x99) [0x6261d9] PyEval_EvalCode
(bundle_reservation_check_func pid=630) ray::IDLE() [0x64c93b]
(bundle_reservation_check_func pid=630) ray::IDLE() [0x647bb6]
(bundle_reservation_check_func pid=630) ray::IDLE() [0x65fdf5]
(bundle_reservation_check_func pid=630) ray::IDLE(_PyRun_SimpleFileObject+0x1a5) [0x65f3c5] _PyRun_SimpleFileObject
(bundle_reservation_check_func pid=630) ray::IDLE(_PyRun_AnyFileObject+0x47) [0x65f057] _PyRun_AnyFileObject
(bundle_reservation_check_func pid=630) ray::IDLE(Py_RunMain+0x2e8) [0x658138] Py_RunMain
(bundle_reservation_check_func pid=630) ray::IDLE(Py_BytesMain+0x2d) [0x611aad] Py_BytesMain
(bundle_reservation_check_func pid=630) /usr/lib/x86_64-linux-gnu/libc.so.6(+0x29d90) [0x7fcfdc71fd90]
(bundle_reservation_check_func pid=630) /usr/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80) [0x7fcfdc71fe40] __libc_start_main
(bundle_reservation_check_func pid=630) ray::IDLE(_start+0x25) [0x611925] _start
(bundle_reservation_check_func pid=630)
(bundle_reservation_check_func pid=630) *** SIGABRT received at time=1739701763 on cpu 167 ***
(bundle_reservation_check_func pid=630) PC: @ 0x7fcfdc78c9fc (unknown) pthread_kill
(bundle_reservation_check_func pid=630) @ 0x7fcfdc738520 (unknown) (unknown)
(bundle_reservation_check_func pid=630) [2025-02-16 02:29:23,259 E 630 630] logging.cc:460: *** SIGABRT received at time=1739701763 on cpu 167 ***
(bundle_reservation_check_func pid=630) [2025-02-16 02:29:23,259 E 630 630] logging.cc:460: PC: @ 0x7fcfdc78c9fc (unknown) pthread_kill
(bundle_reservation_check_func pid=630) [2025-02-16 02:29:23,259 E 630 630] logging.cc:460: @ 0x7fcfdc738520 (unknown) (unknown)
(bundle_reservation_check_func pid=630) Fatal Python error: Aborted
(bundle_reservation_check_func pid=630)
(bundle_reservation_check_func pid=630) Stack (most recent call first):
(bundle_reservation_check_func pid=630) File "/usr/local/lib/python3.12/dist-packages/ray/_private/worker.py", line 935 in main_loop
(bundle_reservation_check_func pid=630) File "/usr/local/lib/python3.12/dist-packages/ray/_private/workers/default_worker.py", line 297 in
(bundle_reservation_check_func pid=630)
(bundle_reservation_check_func pid=630) Extension modules: msgpack._cmsgpack, google._upb._message, psutil._psutil_linux, psutil._psutil_posix, setproctitle, yaml._yaml, charset_normalizer.md, requests.packages.charset_normalizer.md, requests.packages.chardet.md, uvloop.loop, ray._raylet (total: 11)
(raylet) A worker died or was killed while executing a task by an unexpected system error. To troubleshoot the problem, check the logs for the dead worker. RayTask ID: b75636ea82a1234d33406a784cbd4744f757ab5801000000 Worker ID: 672b001daae17f75e8772ea31befb22d0ec222eb8347b05a1d6491d9 Node ID: b39138d229dbb2aa8d7b088f3f59c5b16b59bb38b390e93e25b0d481 Worker IP address: 10.233.96.40 Worker port: 10003 Worker PID: 630 Worker exit type: SYSTEM_ERROR Worker exit detail: Worker unexpectedly exits with a connection error code 2. End of file. There are some potential root causes. (1) The process is killed by SIGKILL by OOM killer due to high memory usage. (2) ray stop --force is called. (3) The worker is crashed unexpectedly due to SIGSEGV or other unexpected errors.
(raylet) E0216 02:29:24.852307304 158 thd.cc:157] pthread_create failed: Resource temporarily unavailable
(pid=663) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xae20c) [0x7fa1b2fac20c]
(pid=663) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xae277) [0x7fa1b2fac277]
(pid=663) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xae4d8) [0x7fa1b2fac4d8]
(pid=663) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(_ZN3ray4core10CoreWorker24HandleGetCoreWorkerStatsENS_3rpc25GetCoreWorkerStatsRequestEPNS2_23GetCoreWorkerStatsReplyESt8functionIFvNS_6StatusES6_IFvvEES9_EE+0x8a9) [0x7fa1b3a99729] ray::core::CoreWorker::HandleGetCoreWorkerStats()
(pid=663) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(_ZN3ray3rpc14ServerCallImplINS0_24CoreWorkerServiceHandlerENS0_25GetCoreWorkerStatsRequestENS0_23GetCoreWorkerStatsReplyELNS0_8AuthTypeE0EE17HandleRequestImplEb+0x104) [0x7fa1b3a80814] ray::rpc::ServerCallImpl<>::HandleRequestImpl()
(pid=663) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(_ZN3ray4core10CoreWorker12RunIOServiceEv+0x91) [0x7fa1b39c9101] ray::core::CoreWorker::RunIOService()
(pid=663) /usr/local/lib/python3.12/dist-packages/ray/_raylet.so(+0xd4fe90) [0x7fa1b3e83e90] thread_proxy
(pid=663) /usr/lib/x86_64-linux-gnu/libc.so.6(+0x94ac3) [0x7fa1b4ffcac3]
(pid=663) /usr/lib/x86_64-linux-gnu/libc.so.6(clone+0x44) [0x7fa1b508dbf4] __clone
(pid=663)
(pid=663)
(pid=663)
(pid=624) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xae20c) [0x7ff704ebd20c]
(pid=624) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xae277) [0x7ff704ebd277]
(pid=624) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xae4d8) [0x7ff704ebd4d8]
(pid=624) /usr/lib/x86_64-linux-gnu/libc.so.6(+0x94ac3) [0x7ff706f0dac3]
(pid=624)
(pid=624)
(pid=624)
(pid=634) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xae20c) [0x7f49a14cf20c]
(pid=634) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xae277) [0x7f49a14cf277]
(pid=634) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xae4d8) [0x7f49a14cf4d8]
(pid=634) /usr/lib/x86_64-linux-gnu/libc.so.6(+0x94ac3) [0x7f49a351fac3]

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@yeqiugt yeqiugt added the bug Something isn't working label Feb 16, 2025
@hmellor hmellor moved this to Backlog in DeepSeek V3/R1 Feb 25, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
Status: Backlog
Development

No branches or pull requests

1 participant