-
-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathscaled_mm_c3x.cuh
159 lines (125 loc) · 5.59 KB
/
scaled_mm_c3x.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#pragma once
// clang-format will break include orders
// clang-format off
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include "cutlass/cutlass.h"
#include "cute/tensor.hpp"
#include "cute/atom/mma_atom.hpp"
#include "cutlass/numeric_types.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "common.hpp"
// clang-format on
/*
Epilogues defined in,
csrc/cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp,
must contain a public type named EVTCompute of type Sm90EVT, as well as a
static prepare_args function that constructs an EVTCompute::Arguments struct.
*/
using namespace cute;
namespace vllm {
// A wrapper for the GEMM kernel that is used to guard against compilation on
// architectures that will never use the kernel. The purpose of this is to
// reduce the size of the compiled binary.
// __CUDA_ARCH__ is not defined in host code, so this lets us smuggle the ifdef
// into code that will be executed on the device where it is defined.
template <typename Kernel>
struct enable_sm90_or_later : Kernel {
template <typename... Args>
CUTLASS_DEVICE void operator()(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 900
Kernel::operator()(std::forward<Args>(args)...);
#endif
}
};
template <typename ElementAB_, typename ElementD_,
template <typename, typename, typename> typename Epilogue_,
typename TileShape, typename ClusterShape, typename KernelSchedule,
typename EpilogueSchedule>
struct cutlass_3x_gemm {
using ElementAB = ElementAB_;
using ElementD = ElementD_;
using ElementAcc =
typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
float>::type;
using EpilogueDescriptor =
cutlass::epilogue::collective::detail::EpilogueDescriptor<
TileShape, cutlass::epilogue::collective::EpilogueTileAuto, ElementD,
ElementD, EpilogueSchedule>;
using Epilogue = Epilogue_<ElementAcc, ElementD, EpilogueDescriptor>;
using StrideD = Stride<int64_t, Int<1>, Int<0>>;
using ElementC = void;
using StrideC = StrideD;
using EVTCompute = typename Epilogue::EVTCompute;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, TileShape,
ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
ElementAcc, float, ElementC, StrideC, 4, ElementD, StrideD, 4,
EpilogueSchedule, EVTCompute>::CollectiveOp;
static constexpr size_t CEStorageSize =
sizeof(typename CollectiveEpilogue::SharedStorage);
using Stages = typename cutlass::gemm::collective::StageCountAutoCarveout<
static_cast<int>(CEStorageSize)>;
// clang-format off
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
ElementAB, cutlass::layout::RowMajor, 16,
ElementAB, cutlass::layout::ColumnMajor, 16,
ElementAcc, TileShape, ClusterShape,
Stages,
KernelSchedule>::CollectiveOp;
// clang-format on
using KernelType = enable_sm90_or_later<cutlass::gemm::kernel::GemmUniversal<
cute::Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue,
cutlass::gemm::PersistentScheduler>>;
struct GemmKernel : public KernelType {};
};
template <typename Gemm, typename... EpilogueArgs>
void cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... epilogue_params) {
using ElementAB = typename Gemm::ElementAB;
using ElementD = typename Gemm::ElementD;
int32_t m = a.size(0);
int32_t n = b.size(1);
int32_t k = a.size(1);
int64_t lda = a.stride(0);
int64_t ldb = b.stride(1);
int64_t ldc = out.stride(0);
using StrideA = Stride<int64_t, Int<1>, int64_t>;
using StrideB = Stride<int64_t, Int<1>, int64_t>;
using StrideC = typename Gemm::StrideC;
StrideA a_stride{lda, Int<1>{}, 0};
StrideB b_stride{ldb, Int<1>{}, 0};
StrideC c_stride{ldc, Int<1>{}, Int<0>{}};
using GemmKernel = typename Gemm::GemmKernel;
typename GemmKernel::ProblemShape prob_shape{m, n, k, 1};
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
auto b_ptr = static_cast<ElementAB*>(b.data_ptr());
typename GemmKernel::MainloopArguments mainloop_args{a_ptr, a_stride, b_ptr,
b_stride};
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
typename GemmKernel::EpilogueArguments epilogue_args{
Gemm::Epilogue::prepare_args(
std::forward<EpilogueArgs>(epilogue_params)...),
c_ptr, c_stride, c_ptr, c_stride};
typename GemmKernel::Arguments args{cutlass::gemm::GemmUniversalMode::kGemm,
prob_shape, mainloop_args, epilogue_args};
// Launch the CUTLASS GEMM kernel.
using GemmOp = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
GemmOp gemm_op;
CUTLASS_CHECK(gemm_op.can_implement(args));
size_t workspace_size = gemm_op.get_workspace_size(args);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
auto workspace = torch::empty(workspace_size, workspace_options);
auto stream = at::cuda::getCurrentCUDAStream(a.get_device());
cutlass::Status status = gemm_op.run(args, workspace.data_ptr(), stream);
CUTLASS_CHECK(status);
}
} // namespace vllm