-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsetup.py
52 lines (46 loc) · 1.76 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/usr/bin/env python
"""The setup script."""
from pkg_resources import parse_requirements
from setuptools import find_packages, setup
with open("README.md", "r", encoding="utf-8") as readme_file:
readme = readme_file.read()
with open("requirements.txt") as requirements_file:
requirements = [str(req) for req in parse_requirements(requirements_file.readlines())]
short_description = (
"Transform entities like companies, products, etc. into vectors to support scalable "
"Record Linkage / Entity Resolution using Approximate Nearest Neighbors."
)
setup(
author="Flávio Juvenal (Vinta Software)",
author_email="[email protected]",
python_requires=">=3.6",
classifiers=[
"Development Status :: 2 - Pre-Alpha",
"Intended Audience :: Developers",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
],
description=short_description,
entry_points={
"console_scripts": [
"entity_embed_train=entity_embed.cli:train",
"entity_embed_predict=entity_embed.cli:predict",
],
},
install_requires=requirements,
license="MIT license",
long_description=readme,
long_description_content_type="text/markdown",
include_package_data=True,
keywords="record linkage,entity resolution,deduplication,embedding",
name="entity-embed",
packages=find_packages(include=["entity_embed", "entity_embed.*"]),
url="https://github.com/vintasoftware/entity-embed",
version="0.0.6",
zip_safe=False,
)