diff --git a/2_logistic_regression.py b/2_logistic_regression.py index a3df9d8..9219c47 100644 --- a/2_logistic_regression.py +++ b/2_logistic_regression.py @@ -14,9 +14,9 @@ def build_model(input_dim, output_dim): return model -def train(model, loss, optimizer, x, y): - x = Variable(x, requires_grad=False) - y = Variable(y, requires_grad=False) +def train(model, loss, optimizer, x_val, y_val): + x = Variable(x_val, requires_grad=False) + y = Variable(y_val, requires_grad=False) # Reset gradient optimizer.zero_grad() @@ -34,9 +34,9 @@ def train(model, loss, optimizer, x, y): return output.data[0] -def predict(model, x): - var_x = Variable(x, requires_grad=False) - output = model.forward(var_x) +def predict(model, x_val): + x = Variable(x_val, requires_grad=False) + output = model.forward(x) return output.data.numpy().argmax(axis=1) diff --git a/3_neural_net.py b/3_neural_net.py index decf299..13ce533 100644 --- a/3_neural_net.py +++ b/3_neural_net.py @@ -16,9 +16,9 @@ def build_model(input_dim, output_dim): return model -def train(model, loss, optimizer, x, y): - x = Variable(x, requires_grad=False) - y = Variable(y, requires_grad=False) +def train(model, loss, optimizer, x_val, y_val): + x = Variable(x_val, requires_grad=False) + y = Variable(y_val, requires_grad=False) # Reset gradient optimizer.zero_grad() @@ -36,9 +36,9 @@ def train(model, loss, optimizer, x, y): return output.data[0] -def predict(model, x): - var_x = Variable(x, requires_grad=False) - output = model.forward(var_x) +def predict(model, x_val): + x = Variable(x_val, requires_grad=False) + output = model.forward(x) return output.data.numpy().argmax(axis=1) diff --git a/4_modern_neural_net.py b/4_modern_neural_net.py index 91a042b..3c57aee 100644 --- a/4_modern_neural_net.py +++ b/4_modern_neural_net.py @@ -20,9 +20,9 @@ def build_model(input_dim, output_dim): return model -def train(model, loss, optimizer, x, y): - x = Variable(x, requires_grad=False) - y = Variable(y, requires_grad=False) +def train(model, loss, optimizer, x_val, y_val): + x = Variable(x_val, requires_grad=False) + y = Variable(y_val, requires_grad=False) # Reset gradient optimizer.zero_grad() @@ -40,9 +40,9 @@ def train(model, loss, optimizer, x, y): return output.data[0] -def predict(model, x): - var_x = Variable(x, requires_grad=False) - output = model.forward(var_x) +def predict(model, x_val): + x = Variable(x_val, requires_grad=False) + output = model.forward(x) return output.data.numpy().argmax(axis=1) @@ -57,7 +57,7 @@ def main(): n_classes = 10 model = build_model(n_features, n_classes) loss = torch.nn.CrossEntropyLoss(size_average=True) - optimizer = optim.RMSprop(model.parameters(), lr=0.01) + optimizer = optim.Adam(model.parameters()) batch_size = 100 for i in range(100): diff --git a/5_convolutional_net.py b/5_convolutional_net.py index 9bfc565..bfdb62a 100644 --- a/5_convolutional_net.py +++ b/5_convolutional_net.py @@ -35,9 +35,9 @@ def forward(self, x): return self.fc.forward(x) -def train(model, loss, optimizer, x, y): - x = Variable(x, requires_grad=False) - y = Variable(y, requires_grad=False) +def train(model, loss, optimizer, x_val, y_val): + x = Variable(x_val, requires_grad=False) + y = Variable(y_val, requires_grad=False) # Reset gradient optimizer.zero_grad() @@ -55,9 +55,9 @@ def train(model, loss, optimizer, x, y): return output.data[0] -def predict(model, x): - var_x = Variable(x, requires_grad=False) - output = model.forward(var_x) +def predict(model, x_val): + x = Variable(x_val, requires_grad=False) + output = model.forward(x) return output.data.numpy().argmax(axis=1) @@ -75,7 +75,7 @@ def main(): n_classes = 10 model = ConvNet(output_dim=n_classes) loss = torch.nn.CrossEntropyLoss(size_average=True) - optimizer = optim.RMSprop(model.parameters(), lr=0.001) + optimizer = optim.SGD(model.parameters()) batch_size = 100 for i in range(100):