-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
56 lines (45 loc) · 1.64 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from flask import Flask, render_template, request
import pickle
import nltk
import re
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
import warnings
warnings.filterwarnings("ignore")
app = Flask(__name__)
nltk.download("stopwords")
ps = PorterStemmer()
model = pickle.load(open("xgb_fake_news_predictor.pkl", 'rb'))
def preprocess_news(news):
p_news = re.sub('[^a-zA-Z]', ' ', news)
p_news = p_news.lower().split()
p_news = [ps.stem(word) for word in p_news if word not in stopwords.words('english')]
p_news = ' '.join(p_news)
return p_news
@app.route("/", methods = ['GET', 'POST'])
def home():
fake_flag = False
non_fake_flag = False
danger = False
message = ""
try:
if request.method == 'POST':
dic = request.form.to_dict()
news = dic['news']
if len(news) == 0:
raise Exception
news = preprocess_news(news)
prediction = model.predict([news])
probability = model.predict_proba([news])
if prediction[0] == 1:
fake_flag = True
message = f"This NEWS is predicted as FAKE NEWS with {round(max(probability[0])*100, 2)}% accuracy"
else:
non_fake_flag = True
message = f"This NEWS is predicted as REAL NEWS with {round(max(probability[0])*100, 2)}% accuracy"
except:
danger = True
message = "Please enter some text"
return render_template("home.html", fake_flag = fake_flag, non_fake_flag = non_fake_flag, message = message, danger = danger)
if __name__ == '__main__':
app.run(debug = True)