-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgail_test.py
195 lines (163 loc) · 5.9 KB
/
gail_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import argparse
import numpy as np
import gym
import torch
import torch.nn as nn
from env2 import Env
from torchsummary import summary
parser = argparse.ArgumentParser(description='Test the PPO agent for the CarRacing-v0')
parser.add_argument('--action-repeat', type=int, default=8, metavar='N', help='repeat action in N frames (default: 12)')
parser.add_argument('--img-stack', type=int, default=4, metavar='N', help='stack N image in a state (default: 4)')
parser.add_argument('--seed', type=int, default=0, metavar='N', help='random seed (default: 0)')
parser.add_argument('--render', action='store_true', help='render the environment')
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
torch.manual_seed(args.seed)
if use_cuda:
torch.cuda.manual_seed(args.seed)
args.render = True
# class Env():
# """
# Test environment wrapper for CarRacing
# """
#
# def __init__(self):
# self.env = gym.make('CarRacing-v0')
# self.env.seed(args.seed)
# self.reward_threshold = self.env.spec.reward_threshold
#
# def reset(self):
# self.counter = 0
# self.av_r = self.reward_memory()
#
# self.die = False
# img_rgb = self.env.reset()
# img_gray = self.rgb2gray(img_rgb)
# self.stack = [img_gray] * args.img_stack
# return np.array(self.stack)
#
# def step(self, action):
# total_reward = 0
# for i in range(args.action_repeat):
# img_rgb, reward, die, _ = self.env.step(action)
# # don't penalize "die state"
# if die:
# reward += 100
# # green penalty
# if np.mean(img_rgb[:, :, 1]) > 185.0:
# reward -= 0.05
# total_reward += reward
# # if no reward recently, end the episode
# done = True if self.av_r(reward) <= -0.1 else False
# if done or die:
# break
# img_gray = self.rgb2gray(img_rgb)
# self.stack.pop(0)
# self.stack.append(img_gray)
# assert len(self.stack) == args.img_stack
# return np.array(self.stack), total_reward, done, die
#
# def render(self, *arg):
# self.env.render(*arg)
#
# @staticmethod
# def rgb2gray(rgb, norm=True):
# gray = np.dot(rgb[..., :], [0.299, 0.587, 0.114])
# if norm:
# # normalize
# gray = gray / 128. - 1.
# return gray
#
# @staticmethod
# def reward_memory():
# count = 0
# length = 100
# history = np.zeros(length)
#
# def memory(reward):
# nonlocal count
# history[count] = reward
# count = (count + 1) % length
# return np.mean(history)
#
# return memory
class Net(nn.Module):
"""
Actor-Critic Network for PPO
"""
def __init__(self):
super(Net, self).__init__()
# print("input shape", args.img_stack)
self.cnn_base = nn.Sequential( # input shape (4, 96, 96)
nn.Conv2d(args.img_stack, 8, kernel_size=4, stride=2),
nn.ReLU(), # activation
nn.Conv2d(8, 16, kernel_size=3, stride=2), # (8, 47, 47)
nn.ReLU(), # activation
nn.Conv2d(16, 32, kernel_size=3, stride=2), # (16, 23, 23)
nn.ReLU(), # activation
nn.Conv2d(32, 64, kernel_size=3, stride=2), # (32, 11, 11)
nn.ReLU(), # activation
nn.Conv2d(64, 128, kernel_size=3, stride=1), # (64, 5, 5)
nn.ReLU(), # activation
nn.Conv2d(128, 256, kernel_size=3, stride=1), # (128, 3, 3)
nn.ReLU(), # activation
) # output shape (256, 1, 1)
self.v = nn.Sequential(nn.Linear(256, 100), nn.ReLU(), nn.Linear(100, 1))
self.fc = nn.Sequential(nn.Linear(256, 100), nn.ReLU())
self.alpha_head = nn.Sequential(nn.Linear(100, 3), nn.Softplus())
self.beta_head = nn.Sequential(nn.Linear(100, 3), nn.Softplus())
self.apply(self._weights_init)
@staticmethod
def _weights_init(m):
if isinstance(m, nn.Conv2d):
nn.init.xavier_uniform_(m.weight, gain=nn.init.calculate_gain('relu'))
nn.init.constant_(m.bias, 0.1)
def forward(self, x):
x = self.cnn_base(x)
x = x.view(-1, 256)
v = self.v(x)
x = self.fc(x)
alpha = self.alpha_head(x) + 1
beta = self.beta_head(x) + 1
return (alpha, beta), v
class Agent():
"""
Agent for testing
"""
def __init__(self):
self.net = Net().float().to(device)
def select_action(self, state):
# print(f"before Isnide select action: shape: {state.shape}")
state = torch.from_numpy(state).float().to(device).unsqueeze(0)
# print(f"Isnide select action: shape: {state.shape}")
with torch.no_grad():
alpha, beta = self.net(state)[0]
action = alpha / (alpha + beta)
action = action.squeeze().cpu().numpy()
return action
def load_param(self):
self.net.load_state_dict(torch.load('param/ppo_net_params.pkl', map_location=torch.device('cpu')))'
if __name__ == "__main__":
agent = Agent()
agent.load_param()
env = Env()
training_records = []
running_score = 0
state = env.reset()
for i_ep in range(10):
score = 0
state = env.reset()
# for t in range(1000):
while True:
action = agent.select_action(state)
# print("actions", action, action.shape)
state_, reward, done, die = env.step(action * np.array([2., 1., 1.]) + np.array([-1., 0., 0.]))
# print(f"State: {state_.shape}, rewards: {reward}")
if args.render:
env.render()
score += reward
state = state_
if done or die:
break
print('Ep {}\tScore: {:.2f}\t'.format(i_ep, score))