-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatabase.py
126 lines (101 loc) · 3.44 KB
/
database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import pandas as pd
import numpy as np
from analysis.NLP_PCA import add_NLP_cols
from sklearn.preprocessing import StandardScaler
DATA_FOLDER = "data"
N_PCA_NLP = 30 # Number of vectors in the PCA
YEARLY_INFLATION = 1.036
def inflation(row):
return row["budget"] * (YEARLY_INFLATION ** (2022 - row["year"]))
genres_global = []
def main():
global genres_global
df_bechdel = pd.read_json("data/bechdel_data.json")
df_bechdel = df_bechdel[df_bechdel["imdbid"] != ""]
df_bechdel["imdbid"] = df_bechdel["imdbid"].astype(float).astype(str)
df_tmdb = pd.read_json("data/tmdb_data.json")
df_tmdb["imdbid"] = df_tmdb["imdb_id"].str[2:].astype(float).astype(str)
df_poster = pd.read_csv("computer_vision/PosterAnalysis.csv")
df_poster["imdbid"] = df_poster["imbdid"].astype(float).astype(str)
df_genderCount = pd.read_csv("data/directors_writers_cast_score.csv")
df_genderCount["imdbid"] = df_genderCount["imdbid"].astype(float).astype(str)
df_genderCount.drop(columns=["title", "year", "id", "rating"], inplace=True)
df_temp_1 = pd.merge(df_bechdel, df_tmdb, "inner", "imdbid")
df_temp_2 = pd.merge(df_poster, df_temp_1, "inner", "imdbid")
df = pd.merge(df_temp_2, df_genderCount, "inner", "imdbid")
df = df[df["overview"].notna()]
df = add_NLP_cols(df, N_PCA_NLP)
def parse_genres(x):
global genres_global
if x is np.nan:
return []
genres = []
for d in x:
genres.append(d["name"])
if d["name"] not in genres_global:
genres_global.append(d["name"])
return genres
df["Genres"] = df["genres"].apply(parse_genres)
for genre in genres_global:
df[f"Is_" + genre] = df["Genres"].apply(lambda x: genre in x)
df["release_month"] = pd.to_datetime(df["release_date"]).dt.month
df["collection"] = df["belongs_to_collection"] is None
df["revenue_is_available"] = df["revenue"] != 0
df["budget is available"] = df["budget"] != 0
df["budget"] = df["budget"] * (YEARLY_INFLATION ** (2022 - df["year"]))
df["revenue"] = df["revenue"] * (YEARLY_INFLATION ** (2022 - df["year"]))
columns_to_remove = [
"title_x",
"imdbid",
"imbdid",
"id_x",
"adult",
"imdb_id",
"overview",
"backdrop_path",
"genres",
"Genres",
"belongs_to_collection",
"homepage",
"id_y",
"original_language",
"original_title",
"poster_path",
"status",
"video",
"spoken_languages",
"tagline",
"title_y",
"release_date",
"directors",
"writers",
"cast",
]
columns_to_maybe_add_back = ["production_companies", "production_countries"]
df = df.drop(columns=columns_to_remove + columns_to_maybe_add_back)
df.to_csv("data/final_database.csv", index=False)
columns_to_scale = [
"year",
"budget",
"popularity",
"revenue",
"runtime",
"vote_average",
"vote_count",
"release_month",
"directors_male",
"directors_female",
"writers_male",
"writers_female",
"cast_male",
"cast_female",
"nb_women",
"nb_men",
"area_women",
"area_men",
]
scaler = StandardScaler()
df[columns_to_scale] = scaler.fit_transform(df[columns_to_scale])
return df
if __name__ == "__main":
df = main()