-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathseverity.py
45 lines (37 loc) · 1.51 KB
/
severity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
# Importing the Adataset
Adataset = pd.read_csv('Accident_Dataset.csv')
X1 = Adataset.iloc[:,:].values
X1 = np.delete(X1,2,axis=1)
X1 = np.delete(X1,1,axis=1)
X1 = np.delete(X1,0,axis=1)
names = (Adataset.columns.values)
names = names[3:]
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values='NaN',strategy="most_frequent",axis=0)
imputer = imputer.fit(X1[:,:])
X1[:,:] = imputer.transform(X1[:,:])
data_new = pd.DataFrame(data=X1,columns=names)
imputer = Imputer(missing_values=-1,strategy="most_frequent",axis=0)
imputer = imputer.fit(X1[:,:])
X1[:,:] = imputer.transform(X1[:,:])
data_new = pd.DataFrame(data=X1,columns=names)
imputer = Imputer(missing_values=-2,strategy="most_frequent",axis=0)
imputer = imputer.fit(X1[:,:])
X1[:,:] = imputer.transform(X1[:,:])
data_new = pd.DataFrame(data=X1,columns=names)
imputer = Imputer(missing_values=1,strategy="most_frequent",axis=0)
imputer = imputer.fit(X1[:,:])
X1[:,:] = imputer.transform(X1[:,:])
data_new = pd.DataFrame(data=X1,columns=names)
plt.figure(figsize=(30,8))
sns.countplot(x='LIGHT_CONDITION', hue='SEVERITY',data=data_new)
sns.countplot(x='SEVERITY',hue='ALCOHOLTIME',data=data_new)
sns.countplot(x='LIGHT_CONDITION',hue='ALCOHOLTIME',data=data_new)
sns.countplot(x='SEVERITY',hue='SPEED_ZONE',data=data_new)
sns.countplot(x='POLICE_ATTEND',hue='SPEED_ZONE',data=data_new)
sns.countplot(x='FEMALES',hue='SEVERITY',data=data_new)