-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathrun_lfnet.py
executable file
·241 lines (196 loc) · 8.55 KB
/
run_lfnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env python
from __future__ import print_function
import os
import sys
import numpy as np
import tensorflow as tf
import importlib
import time
import cv2
from tqdm import tqdm
import pickle
from mydatasets import *
from det_tools import *
from eval_tools import draw_keypoints
from common.tf_train_utils import get_optimizer
from imageio import imread, imsave
from inference import *
from utils import embed_breakpoint, print_opt
MODEL_PATH = './models'
if MODEL_PATH not in sys.path:
sys.path.append(MODEL_PATH)
def build_networks(config, photo, is_training):
DET = importlib.import_module(config.detector)
detector = DET.Model(config, is_training)
if config.input_inst_norm:
print('Apply instance norm on input photos')
photos1 = instance_normalization(photo)
heatmaps, det_endpoints = build_detector_helper(config, detector, photo)
# extract patches
kpts = det_endpoints['kpts']
batch_inds = det_endpoints['batch_inds']
kp_patches = build_patch_extraction(config, det_endpoints, photo)
# Descriptor
DESC = importlib.import_module(config.descriptor)
descriptor = DESC.Model(config, is_training)
desc_feats, desc_endpoints = descriptor.build_model(kp_patches, reuse=False) # [B*K,D]
# scale and orientation (extra)
scale_maps = det_endpoints['scale_maps']
ori_maps = det_endpoints['ori_maps'] # cos/sin
degree_maps, _ = get_degree_maps(ori_maps) # degree (rgb psuedo color code)
kpts_scale = det_endpoints['kpts_scale']
kpts_ori = det_endpoints['kpts_ori']
kpts_ori = tf.atan2(kpts_ori[:,1], kpts_ori[:,0]) # radian
ops = {
'photo': photo,
'is_training': is_training,
'kpts': kpts,
'feats': desc_feats,
# EXTRA
'scale_maps': scale_maps,
'kpts_scale': kpts_scale,
'degree_maps': degree_maps,
'kpts_ori': kpts_ori,
}
return ops
def build_detector_helper(config, detector, photo):
# if config.detector == 'resnet_detector':
# heatmaps, det_endpoints = build_deep_detector(config, detector, photo, reuse=False)
# elif config.detector == 'mso_resnet_detector':
if config.use_nms3d:
heatmaps, det_endpoints = build_multi_scale_deep_detector_3DNMS(config, detector, photo, reuse=False)
else:
heatmaps, det_endpoints = build_multi_scale_deep_detector(config, detector, photo, reuse=False)
# else:
# raise ValueError()
return heatmaps, det_endpoints
def main(config):
# Build Networks
tf.reset_default_graph()
photo_ph = tf.placeholder(tf.float32, [1, None, None, 1]) # input grayscale image, normalized by 0~1
is_training = tf.constant(False) # Always False in testing
ops = build_networks(config, photo_ph, is_training)
tfconfig = tf.ConfigProto()
tfconfig.gpu_options.allow_growth = True
sess = tf.Session(config=tfconfig)
sess.run(tf.global_variables_initializer())
# load model
saver = tf.train.Saver()
print('Load trained models...')
if os.path.isdir(config.model):
checkpoint = tf.train.latest_checkpoint(config.model)
model_dir = config.model
else:
checkpoint = config.model
model_dir = os.path.dirname(config.model)
if checkpoint is not None:
print('Checkpoint', os.path.basename(checkpoint))
print("[{}] Resuming...".format(time.asctime()))
saver.restore(sess, checkpoint)
else:
raise ValueError('Cannot load model from {}'.format(model_dir))
print('Done.')
# Ready to feed input images
img_paths = [x.path for x in os.scandir(config.in_dir) if x.name.endswith('.jpg') or x.name.endswith('.png')]
print('Found {} images...'.format(len(img_paths)))
if not os.path.exists(config.out_dir):
os.makedirs(config.out_dir)
avg_elapsed_time = 0
for img_path in tqdm(img_paths):
photo = imread(img_path)
height, width = photo.shape[:2]
longer_edge = max(height, width)
if config.max_longer_edge > 0 and longer_edge > config.max_longer_edge:
if height > width:
new_height = config.max_longer_edge
new_width = int(width * config.max_longer_edge / height)
else:
new_height = int(height * config.max_longer_edge / width)
new_width = config.max_longer_edge
photo = cv2.resize(photo, (new_width, new_height))
height, width = photo.shape[:2]
rgb = photo.copy()
if photo.ndim == 3 and photo.shape[-1] == 3:
photo = cv2.cvtColor(photo, cv2.COLOR_RGB2GRAY)
photo = photo[None,...,None].astype(np.float32) / 255.0 # normalize 0-1
assert photo.ndim == 4 # [1,H,W,1]
feed_dict = {
photo_ph: photo,
}
if config.full_output:
fetch_dict = {
'kpts': ops['kpts'],
'feats': ops['feats'],
'kpts_scale': ops['kpts_scale'],
'kpts_ori': ops['kpts_ori'],
'scale_maps': ops['scale_maps'],
'degree_maps': ops['degree_maps'],
}
outs = sess.run(fetch_dict, feed_dict=feed_dict)
# draw key
kp_img = draw_keypoints(rgb, outs['kpts'])
scale_range = config.net_max_scale-config.net_min_scale
if scale_range == 0:
scale_range = 1.0
scale_img = (outs['scale_maps'][0]*255/scale_range).astype(np.uint8)
ori_img = (outs['degree_maps'][0]*255).astype(np.uint8)
out_img_path = os.path.join(config.out_dir, os.path.basename(img_path))
imsave(out_img_path, kp_img)
imsave(out_img_path+'-scl.jpg', scale_img)
imsave(out_img_path+'-ori.jpg', ori_img)
np.savez(out_img_path+'.npz', kpts=outs['kpts'], descs=outs['feats'], size=np.array([height, width]),
scales=outs['kpts_scale'], oris=outs['kpts_ori'])
else:
# Dump keypoint locations and their features
fetch_dict = {
'kpts': ops['kpts'],
'feats': ops['feats'],
}
outs = sess.run(fetch_dict, feed_dict=feed_dict)
out_path = os.path.join(config.out_dir, os.path.basename(img_path)+'.npz')
np.savez(out_path, kpts=outs['kpts'], feats=outs['feats'], size=np.array([height, width]))
print('Done.')
if __name__ == '__main__':
from common.argparse_utils import *
parser = get_parser()
general_arg = add_argument_group('General', parser)
general_arg.add_argument('--num_threads', type=int, default=8,
help='the number of threads (for dataset)')
io_arg = add_argument_group('In/Out', parser)
io_arg.add_argument('--in_dir', type=str, default='./samples',
help='input image directory')
# io_arg.add_argument('--in_dir', type=str, default='./release/outdoor_examples/images/sacre_coeur/dense/images',
# help='input image directory')
io_arg.add_argument('--out_dir', type=str, default='./dump_feats',
help='where to save keypoints')
io_arg.add_argument('--full_output', type=str2bool, default=True,
help='dump keypoint image')
model_arg = add_argument_group('Model', parser)
model_arg.add_argument('--model', type=str, default='./release/models/outdoor/',
help='model file or directory')
model_arg.add_argument('--top_k', type=int, default=500,
help='number of keypoints')
model_arg.add_argument('--max_longer_edge', type=int, default=-1,
help='resize image (do nothing if max_longer_edge <= 0)')
tmp_config, unparsed = get_config(parser)
if len(unparsed) > 0:
raise ValueError('Miss finding argument: unparsed={}\n'.format(unparsed))
# restore other hyperparams to build model
if os.path.isdir(tmp_config.model):
config_path = os.path.join(tmp_config.model, 'config.pkl')
else:
config_path = os.path.join(os.path.dirname(tmp_config.model), 'config.pkl')
try:
with open(config_path, 'rb') as f:
config = pickle.load(f)
print_opt(config)
except:
raise ValueError('Fail to open {}'.format(config_path))
for attr, dst_val in sorted(vars(tmp_config).items()):
if hasattr(config, attr):
src_val = getattr(config, attr)
if src_val != dst_val:
setattr(config, attr, dst_val)
else:
setattr(config, attr, dst_val)
main(config)