-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathknn.py
51 lines (42 loc) · 1.47 KB
/
knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from scipy.spatial import distance
from collections import Counter
class KNN():
def fit(self, X_train, Y_train):
self.X_train = X_train
self.Y_train = Y_train
def predict(self, X_test, k):
predictions = []
for row in X_test:
label = self.closest(row,k)
predictions.append(label)
return predictions
def closest(self, row, k):
distances = []
for i in range(len(self.X_train)):
distances.append((i,distance.euclidean(row,self.X_train[i])))
distances = sorted(distances, key=lambda x:x[1])[0:k]
k_indeces = []
for i in range(k):
k_indeces.append(distances[i][0])
k_labels = []
for i in range(k):
k_labels.append(self.Y_train[k_indeces[i]])
c = Counter(k_labels)
return c.most_common()[0][0]
k = input("Enter k: ")
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
Y = iris.target
from sklearn.cross_validation import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = .75)
from sklearn.neighbors import KNeighborsClassifier
classifier = KNN()
print "Fitting classifier..."
classifier.fit(X_train, Y_train)
print "Successfully fitted classifier"
print "Making predictions"
predictions = classifier.predict(X_test, k)
print "Completed making predictions"
from sklearn.metrics import accuracy_score
print "Accuracy:", accuracy_score(Y_test, predictions)*100, "%"