-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
302 lines (245 loc) · 11.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from __future__ import print_function
import random
import time
import argparse
import os
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.model import WideResnet
from datasets.cifar import get_train_loader, get_val_loader
from label_guessor import LabelGuessor
from lr_scheduler import WarmupCosineLrScheduler
from models.ema import EMA
from utils import accuracy, setup_default_logging, interleave, de_interleave
from utils import AverageMeter
# os.environ['CUDA_VISIBLE_DEVICES'] = '1'
def set_model(args):
model = WideResnet(n_classes=10 if args.dataset == 'CIFAR10' else 100,
k=args.wresnet_k, n=args.wresnet_n) # wresnet-28-2
model.train()
model.cuda()
criteria_x = nn.CrossEntropyLoss().cuda()
criteria_u = nn.CrossEntropyLoss(reduction='none').cuda()
return model, criteria_x, criteria_u
def train_one_epoch(epoch,
model,
criteria_x,
criteria_u,
optim,
lr_schdlr,
ema,
dltrain_x,
dltrain_u,
lb_guessor,
lambda_u,
n_iters,
logger,
):
model.train()
# loss_meter, loss_x_meter, loss_u_meter, loss_u_real_meter = [], [], [], []
loss_meter = AverageMeter()
loss_x_meter = AverageMeter()
loss_u_meter = AverageMeter()
loss_u_real_meter = AverageMeter()
# the number of correctly-predicted and gradient-considered unlabeled data
n_correct_u_lbs_meter = AverageMeter()
# the number of gradient-considered strong augmentation (logits above threshold) of unlabeled samples
n_strong_aug_meter = AverageMeter()
mask_meter = AverageMeter()
epoch_start = time.time() # start time
dl_x, dl_u = iter(dltrain_x), iter(dltrain_u)
for it in range(n_iters):
ims_x_weak, ims_x_strong, lbs_x = next(dl_x)
ims_u_weak, ims_u_strong, lbs_u_real = next(dl_u)
lbs_x = lbs_x.cuda()
lbs_u_real = lbs_u_real.cuda()
# --------------------------------------
bt = ims_x_weak.size(0)
mu = int(ims_u_weak.size(0) // bt)
imgs = torch.cat([ims_x_weak, ims_u_weak, ims_u_strong], dim=0).cuda()
imgs = interleave(imgs, 2 * mu + 1)
logits = model(imgs)
logits = de_interleave(logits, 2 * mu + 1)
logits_x = logits[:bt]
logits_u_w, logits_u_s = torch.split(logits[bt:], bt * mu)
loss_x = criteria_x(logits_x, lbs_x)
with torch.no_grad():
probs = torch.softmax(logits_u_w, dim=1)
scores, lbs_u_guess = torch.max(probs, dim=1)
mask = scores.ge(0.95).float()
loss_u = (criteria_u(logits_u_s, lbs_u_guess) * mask).mean()
loss = loss_x + lambda_u * loss_u
loss_u_real = (F.cross_entropy(logits_u_s, lbs_u_real) * mask).mean()
# --------------------------------------
# mask, lbs_u_guess = lb_guessor(model, ims_u_weak.cuda())
# n_x = ims_x_weak.size(0)
# ims_x_u = torch.cat([ims_x_weak, ims_u_strong]).cuda()
# logits_x_u = model(ims_x_u)
# logits_x, logits_u = logits_x_u[:n_x], logits_x_u[n_x:]
# loss_x = criteria_x(logits_x, lbs_x)
# loss_u = (criteria_u(logits_u, lbs_u_guess) * mask).mean()
# loss = loss_x + lambda_u * loss_u
# loss_u_real = (F.cross_entropy(logits_u, lbs_u_real) * mask).mean()
optim.zero_grad()
loss.backward()
optim.step()
ema.update_params()
lr_schdlr.step()
loss_meter.update(loss.item())
loss_x_meter.update(loss_x.item())
loss_u_meter.update(loss_u.item())
loss_u_real_meter.update(loss_u_real.item())
mask_meter.update(mask.mean().item())
corr_u_lb = (lbs_u_guess == lbs_u_real).float() * mask
n_correct_u_lbs_meter.update(corr_u_lb.sum().item())
n_strong_aug_meter.update(mask.sum().item())
if (it + 1) % 512 == 0:
t = time.time() - epoch_start
lr_log = [pg['lr'] for pg in optim.param_groups]
lr_log = sum(lr_log) / len(lr_log)
logger.info("epoch:{}, iter: {}. loss: {:.4f}. loss_u: {:.4f}. loss_x: {:.4f}. loss_u_real: {:.4f}. "
"n_correct_u: {:.2f}/{:.2f}. Mask:{:.4f} . LR: {:.4f}. Time: {:.2f}".format(
epoch, it + 1, loss_meter.avg, loss_u_meter.avg, loss_x_meter.avg, loss_u_real_meter.avg,
n_correct_u_lbs_meter.avg, n_strong_aug_meter.avg, mask_meter.avg, lr_log, t))
epoch_start = time.time()
ema.update_buffer()
return loss_meter.avg, loss_x_meter.avg, loss_u_meter.avg, loss_u_real_meter.avg, mask_meter.avg
def evaluate(ema, dataloader, criterion):
# using EMA params to evaluate performance
ema.apply_shadow()
ema.model.eval()
ema.model.cuda()
loss_meter = AverageMeter()
top1_meter = AverageMeter()
top5_meter = AverageMeter()
# matches = []
with torch.no_grad():
for ims, lbs in dataloader:
ims = ims.cuda()
lbs = lbs.cuda()
logits = ema.model(ims)
loss = criterion(logits, lbs)
scores = torch.softmax(logits, dim=1)
top1, top5 = accuracy(scores, lbs, (1, 5))
loss_meter.update(loss.item())
top1_meter.update(top1.item())
top5_meter.update(top5.item())
# note roll back model current params to continue training
ema.restore()
return top1_meter.avg, top5_meter.avg, loss_meter.avg
def main():
parser = argparse.ArgumentParser(description=' FixMatch Training')
parser.add_argument('--wresnet-k', default=2, type=int,
help='width factor of wide resnet')
parser.add_argument('--wresnet-n', default=28, type=int,
help='depth of wide resnet')
parser.add_argument('--dataset', type=str, default='CIFAR10',
help='number of classes in dataset')
# parser.add_argument('--n-classes', type=int, default=100,
# help='number of classes in dataset')
parser.add_argument('--n-labeled', type=int, default=40,
help='number of labeled samples for training')
parser.add_argument('--n-epoches', type=int, default=1024,
help='number of training epoches')
parser.add_argument('--batchsize', type=int, default=64,
help='train batch size of labeled samples')
parser.add_argument('--mu', type=int, default=7,
help='factor of train batch size of unlabeled samples')
parser.add_argument('--thr', type=float, default=0.95,
help='pseudo label threshold')
parser.add_argument('--n-imgs-per-epoch', type=int, default=64 * 1024,
help='number of training images for each epoch')
parser.add_argument('--lam-u', type=float, default=1.,
help='coefficient of unlabeled loss')
parser.add_argument('--ema-alpha', type=float, default=0.999,
help='decay rate for ema module')
parser.add_argument('--lr', type=float, default=0.03,
help='learning rate for training')
parser.add_argument('--weight-decay', type=float, default=5e-4,
help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum for optimizer')
parser.add_argument('--seed', type=int, default=-1,
help='seed for random behaviors, no seed if negtive')
args = parser.parse_args()
logger, writer = setup_default_logging(args)
logger.info(dict(args._get_kwargs()))
# global settings
# torch.multiprocessing.set_sharing_strategy('file_system')
if args.seed > 0:
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
# torch.backends.cudnn.deterministic = True
n_iters_per_epoch = args.n_imgs_per_epoch // args.batchsize # 1024
n_iters_all = n_iters_per_epoch * args.n_epoches # 1024 * 1024
logger.info("***** Running training *****")
logger.info(f" Task = {args.dataset}@{args.n_labeled}")
logger.info(f" Num Epochs = {n_iters_per_epoch}")
logger.info(f" Batch size per GPU = {args.batchsize}")
# logger.info(f" Total train batch size = {args.batch_size * args.world_size}")
logger.info(f" Total optimization steps = {n_iters_all}")
model, criteria_x, criteria_u = set_model(args)
logger.info("Total params: {:.2f}M".format(
sum(p.numel() for p in model.parameters()) / 1e6))
dltrain_x, dltrain_u = get_train_loader(
args.dataset, args.batchsize, args.mu, n_iters_per_epoch, L=args.n_labeled)
dlval = get_val_loader(dataset=args.dataset, batch_size=64, num_workers=2)
lb_guessor = LabelGuessor(thresh=args.thr)
ema = EMA(model, args.ema_alpha)
wd_params, non_wd_params = [], []
for name, param in model.named_parameters():
# if len(param.size()) == 1:
if 'bn' in name:
non_wd_params.append(param) # bn.weight, bn.bias and classifier.bias
# print(name)
else:
wd_params.append(param)
param_list = [
{'params': wd_params}, {'params': non_wd_params, 'weight_decay': 0}]
optim = torch.optim.SGD(param_list, lr=args.lr, weight_decay=args.weight_decay,
momentum=args.momentum, nesterov=True)
lr_schdlr = WarmupCosineLrScheduler(
optim, max_iter=n_iters_all, warmup_iter=0
)
train_args = dict(
model=model,
criteria_x=criteria_x,
criteria_u=criteria_u,
optim=optim,
lr_schdlr=lr_schdlr,
ema=ema,
dltrain_x=dltrain_x,
dltrain_u=dltrain_u,
lb_guessor=lb_guessor,
lambda_u=args.lam_u,
n_iters=n_iters_per_epoch,
logger=logger
)
best_acc = -1
best_epoch = 0
logger.info('-----------start training--------------')
for epoch in range(args.n_epoches):
train_loss, loss_x, loss_u, loss_u_real, mask_mean = train_one_epoch(epoch, **train_args)
# torch.cuda.empty_cache()
top1, top5, valid_loss = evaluate(ema, dlval, criteria_x)
writer.add_scalars('train/1.loss', {'train': train_loss,
'test': valid_loss}, epoch)
writer.add_scalar('train/2.train_loss_x', loss_x, epoch)
writer.add_scalar('train/3.train_loss_u', loss_u, epoch)
writer.add_scalar('train/4.train_loss_u_real', loss_u_real, epoch)
writer.add_scalar('train/5.mask_mean', mask_mean, epoch)
writer.add_scalars('test/1.test_acc', {'top1': top1, 'top5': top5}, epoch)
# writer.add_scalar('test/2.test_loss', loss, epoch)
# best_acc = top1 if best_acc < top1 else best_acc
if best_acc < top1:
best_acc = top1
best_epoch = epoch
logger.info("Epoch {}. Top1: {:.4f}. Top5: {:.4f}. best_acc: {:.4f} in epoch{}".
format(epoch, top1, top5, best_acc, best_epoch))
writer.close()
if __name__ == '__main__':
main()