-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
67 lines (54 loc) · 2.44 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from __future__ import print_function, division
import os
import torch
from utils import net_builder
from datasets.ssl_dataset import SSL_Dataset
from datasets.data_utils import get_data_loader
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--load_path', type=str, default='./saved_models/fixmatch/model_best.pth')
parser.add_argument('--use_train_model', action='store_true')
'''
Backbone Net Configurations
'''
parser.add_argument('--net', type=str, default='WideResNet')
parser.add_argument('--net_from_name', type=bool, default=False)
parser.add_argument('--depth', type=int, default=28)
parser.add_argument('--widen_factor', type=int, default=2)
parser.add_argument('--leaky_slope', type=float, default=0.1)
parser.add_argument('--dropout', type=float, default=0.0)
'''
Data Configurations
'''
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--data_dir', type=str, default='./data')
parser.add_argument('--dataset', type=str, default='cifar10')
parser.add_argument('--num_classes', type=int, default=10)
args = parser.parse_args()
checkpoint_path = os.path.join(args.load_path)
checkpoint = torch.load(checkpoint_path)
load_model = checkpoint['train_model'] if args.use_train_model else checkpoint['eval_model']
_net_builder = net_builder(args.net,
args.net_from_name,
{'depth': args.depth,
'widen_factor': args.widen_factor,
'leaky_slope': args.leaky_slope,
'dropRate': args.dropout})
net = _net_builder(num_classes=args.num_classes)
net.load_state_dict(load_model)
if torch.cuda.is_available():
net.cuda()
net.eval()
_eval_dset = SSL_Dataset(name=args.dataset, train=False, data_dir=args.data_dir)
eval_dset = _eval_dset.get_dset()
eval_loader = get_data_loader(eval_dset,
args.batch_size,
num_workers=1)
acc = 0.0
with torch.no_grad():
for image, target in eval_loader:
image = image.type(torch.FloatTensor).cuda()
logit = net(image)
acc += logit.cpu().max(1)[1].eq(target).sum().numpy()
print(f"Test Accuracy: {acc/len(eval_dset)}")