-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathapp.py
110 lines (86 loc) · 3.84 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import gradio as gr
import torch
import numpy as np
import sys
from vinorm import TTSnorm
from utils_audio import convert_to_wav
sys.path.append("vits")
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
from scipy.io.wavfile import write
import logging
numba_logger = logging.getLogger('numba')
numba_logger.setLevel(logging.WARNING)
from resemblyzer import preprocess_wav, VoiceEncoder
device = "cpu"
def get_text(texts, hps):
text_norm_list = []
for text in texts.split(","):
chunk_strings = []
chunk_len = 30
for i in range(0, len(text.split()), chunk_len):
chunk = " ".join(text.split()[i:i+chunk_len])
chunk_strings.append(chunk)
for chunk_string in chunk_strings:
text_norm = text_to_sequence(chunk_string, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm_list.append(torch.LongTensor(text_norm))
return text_norm_list
def get_speaker_embedding(path):
encoder = VoiceEncoder(device='cpu')
path = convert_to_wav(path)
wav = preprocess_wav(path)
embed = encoder.embed_utterance(wav)
return embed
class VoiceClone():
def __init__(self, checkpoint_path):
hps = utils.get_hparams_from_file("./vits/configs/vivos.json")
self.net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model).to(device)
_ = self.net_g.eval()
_ = utils.load_checkpoint(checkpoint_path, self.net_g, None)
self.hps = hps
def infer(self, text, ref_audio):
text_norm =TTSnorm(text)
stn_tst_list = get_text(text_norm, self.hps)
with torch.no_grad():
audios = []
for stn_tst in stn_tst_list:
x_tst = stn_tst.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
speaker_embedding = get_speaker_embedding(ref_audio)
speaker_embedding = torch.FloatTensor(torch.from_numpy(speaker_embedding)).unsqueeze(0).to(device)
audio = self.net_g.infer(x_tst, x_tst_lengths, speaker_embedding=speaker_embedding, noise_scale=.667, noise_scale_w=0.8, length_scale=1)
audio = audio[0][0,0].data.cpu().float().numpy()
audios.append(audio)
print(audio.shape)
audios = np.concatenate(audios, axis=0)
write(ref_audio.replace(".wav", "_clone.wav"), 22050, audios)
return ref_audio.replace(".wav", "_clone.wav"), text_norm
object = VoiceClone("vits/logs/vivos/G_7700000.pth")
def clonevoice(text: str, speaker_wav, file_upload, language: str):
speaker_source = ""
if speaker_wav is not None:
speaker_source = speaker_wav
elif file_upload is not None:
speaker_source = file_upload
else:
speaker_source = "vits/audio/sontung.wav"
print(speaker_source)
outfile, text_norm = object.infer(text, speaker_source)
return [outfile, text_norm]
inputs = [gr.Textbox(label="Input", value="muốn ngồi ở một vị trí không ai ngồi được thì phải chịu cảm giác không ai chịu được", max_lines=3),
gr.Audio(Lable="Speaker Wav", source="microphone", type="filepath"),
gr.Audio(Lable="Speaker Wav", source="upload", type="filepath"),
gr.Radio(label="Language", choices=["Vietnamese"], value="en")]
outputs = [gr.Audio(label="Output"), gr.TextArea()]
demo = gr.Interface(fn=clonevoice, inputs=inputs, outputs=outputs)
demo.launch(debug=True)