forked from OrangeX4/typst-sympy-calculator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTypstConverter.py
687 lines (589 loc) · 25.5 KB
/
TypstConverter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
import sympy
from sympy.printing.str import StrPrinter
from TypstParser import TypstMathParser
from functools import wraps, reduce
from typing import Callable
class TypstMathPrinter(StrPrinter):
def paren(self, expr):
return '(' + self.doprint(expr) + ')' if expr.is_Add else self.doprint(expr)
def _print_list(self, lst):
lst = list(set([self.doprint(item) for item in lst]))
# lst = [self.doprint(item) for item in lst]
return '(' + ', '.join(lst) + ')'
def _print_tuple(self, tup):
return '(' + ', '.join([self.doprint(item) for item in tup]) + ')'
def _print_dict(self, dic):
if len(dic) == 0:
return 'nothing'
elif len(dic) == 1:
k, v = dic.popitem()
return self.doprint(k) + ' = ' + self.doprint(v)
else:
return 'cases(' + ', '.join([self.doprint(k) + ' = ' + self.doprint(v) for k, v in dic.items()]) + ')'
def _print_Mul(self, expr):
def mul(x, y):
if x == '1':
return y
if x == '-1':
return '-' + y
return x + ' ' + y
if len(expr.args) >= 2 and expr.args[0].is_Number:
num = expr.args[0]
x = expr.args[1]
if x.is_Pow and x.args[1].is_Number and x.args[1] < 0:
return (reduce(mul, [self.paren(arg) for arg in [num] + list(expr.args[2:])])) + ' / ' + self.paren(sympy.simplify(x ** -1))
else:
return reduce(mul, [self.paren(arg) for arg in expr.args])
else:
x = expr.args[0]
if x.is_Pow and x.args[1].is_Number and x.args[1] < 0:
return (reduce(mul, [self.paren(arg) for arg in expr.args[1:]]) if len(expr.args) > 1 else '1') + ' / ' + self.paren(sympy.simplify(x ** -1))
else:
return reduce(mul, [self.paren(arg) for arg in expr.args])
# matrix form: mat(1, 2; 3, 4)
def _print_MatrixBase(self, expr):
n, m, mat_flattern = expr.args
res = 'mat('
rows = [mat_flattern[i:i+m] for i in range(0, n*m, m)]
res += '; '.join(map(lambda row: ', '.join(map(self.doprint, row)), rows))
res += ')'
return res
def _print_Limit(self, expr):
e, z = expr.args
return "lim_(%s -> %s) %s" % (self._print(z), self._print(z), self._print(e))
def _print_Integral(self, expr):
e, lims = expr.args
if len(lims) > 1:
return "integral_%s^%s %s dif %s" % (self.paren(lims[1]), self.paren(lims[2]), self._print(e), self._print(lims[0]))
else:
return "integral %s dif %s" % (self._print(e), self._print(lims))
def _print_Sum(self, expr):
e, lims = expr.args
return "sum_(%s = %s)^%s %s" % (self._print(lims[0]), self._print(lims[1]), self.paren(lims[2]), self._print(e))
def _print_Product(self, expr):
e, lims = expr.args
return "product_(%s = %s)^%s %s" % (self._print(lims[0]), self._print(lims[1]), self.paren(lims[2]), self._print(e))
def _print_factorial(self, expr):
return "%s!" % self._print(expr.args[0])
def _print_Derivative(self, expr):
e = expr.args[0]
wrt = expr.args[1]
return "dif / (dif %s) (%s)" % (self._print(wrt), self._print(e))
def _print_Abs(self, expr):
return "|%s|" % self._print(expr.args[0])
def _print_Equality(self, expr):
return "%s = %s" % (self._print(expr.args[0]), self._print(expr.args[1]))
# using ^ but not ** for power
def _print_Pow(self, expr):
b, e = expr.args
base = self.doprint(b) if b.is_Atom else '(' + self.doprint(b) + ')'
if e is sympy.S.Half:
return "sqrt(%s)" % self.doprint(b)
if -e is sympy.S.Half:
return "1 / sqrt(%s)" % self.doprint(b)
if e is -sympy.S.One:
return "1 / %s" % base
if e.is_Atom or e.is_Pow:
return base + '^' + self.doprint(e)
else:
return base + '^' + '(' + self.doprint(e) + ')'
def _print_And(self, expr):
return ' and '.join([self.doprint(item) for item in expr.args])
def _print_Or(self, expr):
return ' or '.join([self.doprint(item) for item in expr.args])
def _print_Not(self, expr):
return 'not ' + self.doprint(expr.args[0])
class TypstMathConverter(object):
id2type = {}
id2func = {}
def __init__(self) -> None:
self.parser = TypstMathParser()
self.printer = TypstMathPrinter()
def define(self, name: str, type: str, func: Callable = None):
if name.startswith('#'):
name = name[1:]
self.id2type[name.split('_')[0]] = type
if isinstance(func, Callable):
self.id2func[name] = func
name = '#' + name
self.id2type[name.split('_')[0]] = type
if isinstance(func, Callable):
self.id2func[name] = func
def undefine(self, name: str):
if name.startswith('#'):
name = name[1:]
if name in self.id2type:
del self.id2type[name]
if name in self.id2func:
del self.id2func[name]
name = '#' + name
if name in self.id2type:
del self.id2type[name]
if name in self.id2func:
del self.id2func[name]
def define_accent(self, accent_name: str):
self.define(accent_name, 'ACCENT_OP')
def define_symbol_base(self, symbol_base_name: str):
self.define(symbol_base_name, 'SYMBOL_BASE')
def define_function(self, function_name: str):
self.define(function_name, 'FUNC')
def parse(self, typst_math: str):
self.parser.id2type = self.id2type
return self.parser.parse(typst_math)
def sympy(self, typst_math: str):
math = self.parse(typst_math)
return self.convert_math(math)
def typst(self, sympy_expr) -> str:
return self.printer.doprint(sympy_expr)
def convert_math(self, math):
return self.convert_relation(math.relation())
def convert_relation(self, relation):
relation_op = relation.RELATION_OP()
if relation_op:
relations = relation.relation()
assert len(relations) == 2
op = relation_op.getText()
def rel(i):
return self.convert_relation(relations[i])
if op == '=':
return sympy.Eq(rel(0), rel(1))
elif op == '==':
return sympy.Eq(rel(0), rel(1))
elif op == '!=':
return sympy.Ne(rel(0), rel(1))
elif op == '<':
return sympy.Lt(rel(0), rel(1))
elif op == '>':
return sympy.Gt(rel(0), rel(1))
elif op == '<=':
return sympy.Le(rel(0), rel(1))
elif op == '>=':
return sympy.Ge(rel(0), rel(1))
elif op in self.id2type and self.id2type[op] == 'RELATION_OP':
assert op in self.id2func, f'function for {op} not found'
return self.id2func[op](relation)
else:
raise Exception(f'unknown relation operator {op}')
else:
expr = relation.expr()
assert expr
return self.convert_expr(expr)
def convert_expr(self, expr):
return self.convert_additive(expr.additive())
def convert_additive(self, additive):
additive_op = additive.ADDITIVE_OP()
if additive_op:
additives = additive.additive()
assert len(additives) == 2
op = additive_op.getText()
def additive_at(i):
return self.convert_additive(additives[i])
if op == '+':
return additive_at(0) + additive_at(1)
elif op == '-':
return additive_at(0) - additive_at(1)
elif op in self.id2type and self.id2type[op] == 'ADDITIVE_OP':
assert op in self.id2func, f'function for {op} not found'
return self.id2func[op](additive)
else:
raise Exception(f'unknown additive operator {op}')
else:
return self.convert_mp(additive.mp())
def convert_mp(self, mp, is_denominator=False):
mp_op = mp.MP_OP()
if mp_op:
mps = mp.mp()
assert len(mps) == 2
op = mp_op.getText()
def mp_at(i, is_denominator=False):
return self.convert_mp(mps[i], is_denominator=is_denominator)
if op == '*':
return mp_at(0) * mp_at(1)
elif op == '/':
return mp_at(0) / mp_at(1, True)
elif op == '\\/':
return mp_at(0) / mp_at(1, True)
elif op in self.id2type and self.id2type[op] == 'MP_OP':
assert op in self.id2func, f'function for {op} not found'
return self.id2func[op](mp)
else:
raise Exception(f'unknown mp operator {op}')
else:
return self.convert_unary(mp.unary(), is_denominator=is_denominator)
def convert_unary(self, unary, is_denominator=False):
additive_op = unary.ADDITIVE_OP()
if additive_op:
unary = unary.unary()
assert unary
op = additive_op.getText()
if op == '+':
return self.convert_unary(unary, is_denominator=is_denominator)
elif op == '-':
return -self.convert_unary(unary, is_denominator=is_denominator)
else:
raise Exception(f'unsupport unary operator {op}')
else:
postfixes = [self.convert_postfix(pos) for pos in unary.postfix()]
assert len(postfixes) >= 1
if len(postfixes) == 1:
return postfixes[0]
else:
if is_denominator:
return postfixes[0] / reduce(lambda x, y: x * y, postfixes[1:])
else:
return reduce(lambda x, y: x * y, postfixes)
def convert_eval_at(self, expr, eval_at):
# eval_at: EVAL_BAR subsupassign;
symbol, sub, sup = self.convert_subsupassign(eval_at.subsupassign())
if symbol is None:
symbol = expr.free_symbols.pop()
assert sub or sup
if sub is None or sup is None:
val = sub or sup
return expr.subs(symbol, val)
else:
return expr.subs(symbol, sup) - expr.subs(symbol, sub)
def convert_postfix(self, postfix):
exp = postfix.exp()
assert exp
result = self.convert_exp(exp)
postfix_ops = postfix.postfix_op()
for postfix_op in postfix_ops:
if postfix_op.eval_at():
result = self.convert_eval_at(result, postfix_op.eval_at())
elif postfix_op.transpose():
result = sympy.transpose(result)
elif postfix_op.POSTFIX_OP():
op = postfix_op.POSTFIX_OP().getText()
if op == '!':
result = sympy.factorial(result)
elif op == '%':
result = result / 100
elif op in self.id2type and self.id2type[op] == 'POSTFIX_OP':
assert op in self.id2func, f'function for {op} not found'
# unsupport ast function
result = self.id2func[op](result)
else:
raise Exception(f'unknown postfix operator {op}')
else:
raise Exception(
f'unknown postfix operator {postfix_op.getText()}')
return result
def convert_exp(self, exp):
comp = exp.comp()
assert comp
supexpr = exp.supexpr()
if supexpr:
return self.convert_comp(comp) ** self.convert_supexpr(supexpr)
else:
return self.convert_comp(comp)
def convert_supexpr(self, supexpr):
exp = supexpr.exp()
if exp:
return self.convert_exp(exp)
else:
return self.convert_expr(supexpr.expr())
def convert_comp(self, comp):
if comp.group():
return self.convert_group(comp.group())
elif comp.abs_group():
return self.convert_abs_group(comp.abs_group())
elif comp.func():
return self.convert_func(comp.func())
elif comp.matrix():
return self.convert_matrix(comp.matrix())
elif comp.reduceit():
return self.convert_reduceit(comp.reduceit())
elif comp.lim():
return self.convert_lim(comp.lim())
elif comp.log():
return self.convert_log(comp.log())
elif comp.integral():
return self.convert_integral(comp.integral())
elif comp.atom():
return self.convert_atom(comp.atom())
def convert_group(self, group):
return self.convert_expr(group.expr())
def convert_abs_group(self, abs_group):
return sympy.Abs(self.convert_expr(abs_group.expr()))
def convert_func(self, func):
func_base_name = func.FUNC().getText()
if func.subargs():
subargs = func.subargs().getText()
else:
subargs = ''
func_name = func_base_name + subargs
supexpr = None
if func.supexpr():
supexpr = self.convert_supexpr(func.supexpr())
if func_base_name in self.id2type and self.id2type[func_base_name] == 'FUNC':
if func_name in self.id2func:
if supexpr:
return self.id2func[func_name](func) ** supexpr
else:
return self.id2func[func_name](func)
else:
func_args = func.args()
if func_args:
args = [self.convert_relation(
arg) for arg in func_args.relation()]
else:
args = [self.convert_mp(func.mp())]
if supexpr:
return sympy.Function(func_name)(*args) ** supexpr
else:
return sympy.Function(func_name)(*args)
else:
raise Exception(f'unknown function {func_name}')
def convert_matrix(self, matrix):
func_name = matrix.FUNC_MAT().getText()
if func_name in self.id2type and self.id2type[func_name] == 'FUNC_MAT':
assert func_name in self.id2func, f'function for {func_name} not found'
return self.id2func[func_name](matrix)
else:
raise Exception(f'unknown matrix function {func_name}')
def convert_subassign(self, subassign):
if subassign.atom():
return None, self.convert_atom(subassign.atom())
elif subassign.expr():
return None, self.convert_expr(subassign.expr())
elif subassign.relation():
# assert relation is `symbol = expr`
rel = self.convert_relation(subassign.relation())
assert isinstance(rel, sympy.Equality)
return rel.lhs, rel.rhs
def convert_supassign(self, supassign):
if supassign.exp():
return None, self.convert_exp(supassign.exp())
elif supassign.expr():
return None, self.convert_expr(supassign.expr())
elif supassign.relation():
rel = self.convert_relation(supassign.relation())
assert isinstance(rel, sympy.Equality)
assert isinstance(rel.lhs, sympy.Symbol), f'lhs of {supassign.relation().getText()} is not a symbol'
return rel.lhs, rel.rhs
def convert_subsupassign(self, subsupassign):
symbol = None
sub = None
sup = None
# process sub
if subsupassign.subassign():
sym, sub = self.convert_subassign(subsupassign.subassign())
if sym:
symbol = sym
# process sup
if subsupassign.supexpr():
sup = self.convert_supexpr(subsupassign.supexpr())
elif subsupassign.supassign():
sym, sup = self.convert_supassign(subsupassign.supassign())
if sym:
symbol = sym
return (symbol, sub, sup)
def convert_reduceit(self, reduceit):
reduce_name = reduceit.REDUCE_OP().getText()
if reduce_name in self.id2type and self.id2type[reduce_name] == 'REDUCE_OP':
assert reduce_name in self.id2func, f'function for {reduce_name} not found'
return self.id2func[reduce_name](reduceit)
else:
raise Exception(f'unknown reduce function {reduce_name}')
def convert_lim(self, lim):
symbol = self.convert_symbol(lim.symbol())
expr = self.convert_expr(lim.expr())
additive = self.convert_additive(lim.additive())
return sympy.Limit(additive, symbol, expr)
def convert_log(self, log):
if log.expr():
value = self.convert_expr(log.expr())
else:
assert log.mp()
value = self.convert_mp(log.mp())
if log.subexpr():
subexpr = self.convert_subexpr(log.subexpr())
return sympy.log(value, subexpr)
else:
return sympy.log(value)
def convert_integral(self, integral):
subsupexpr = integral.subsupexpr()
additive = self.convert_additive(integral.additive())
symbol = self.convert_symbol(integral.symbol())
if subsupexpr:
subexpr, supexpr = self.convert_subsupexpr(subsupexpr)
return sympy.Integral(additive, (symbol, subexpr, supexpr))
else:
return sympy.Integral(additive, symbol)
def convert_subsupexpr(self, subsupexpr):
subexpr = self.convert_subexpr(subsupexpr.subexpr())
supexpr = self.convert_supexpr(subsupexpr.supexpr())
return subexpr, supexpr
def convert_subexpr(self, subexpr):
if subexpr.atom():
return self.convert_atom(subexpr.atom())
elif subexpr.expr():
return self.convert_expr(subexpr.expr())
else:
raise Exception(f'unknown subexpr {subexpr.getText()}')
def convert_supexpr(self, supexpr):
if supexpr.exp():
return self.convert_exp(supexpr.exp())
elif supexpr.expr():
return self.convert_expr(supexpr.expr())
else:
raise Exception(f'unknown supexpr {supexpr.getText()}')
def convert_atom(self, atom):
if atom.NUMBER():
# convert to a rational number but not a float
return sympy.Rational(atom.NUMBER().getText())
elif atom.symbol():
return self.convert_symbol(atom.symbol())
else:
raise Exception(f'unknown atom {atom.getText()}')
def convert_symbol(self, symbol):
symbol_name = symbol.getText()
if symbol_name in self.id2func:
# it is a constant function but not a symbol
return self.id2func[symbol_name]()
else:
return sympy.Symbol(symbol_name)
def get_decorators(env):
class operator(object):
def __init__(self, type: str, convert_ast: Callable, name: str = None, ast=False):
self.type = type
self.convert_ast = convert_ast
self.name = name
self.func = None
self.ast = ast
self.env = env
def __call__(self, func):
assert isinstance(func, Callable)
if self.name is None:
name = func.__name__
assert name.startswith(
'convert_'), f'function name "{name}" should start with "convert_"'
assert len(name) > len('convert_')
self.name = name[len('convert_'):].replace('_dot_', '.')
if self.ast:
self.func = func
else:
# convert ast to args and kwargs
@wraps(func)
def ast_func(*args, **kwargs):
args, kwargs = self.convert_ast(*args, **kwargs)
return func(*args, **kwargs)
self.func = ast_func
# save to env
self.env.define(self.name, self.type, self.func)
return self.func
def __repr__(self):
return f'{self.type}(name = {self.name}, ast = {self.ast})'
class relation_op(operator):
def __init__(self, name: str = None, ast=False):
def convert_ast(relation):
return [self.env.convert_relation(relation) for relation in relation.relation()], {}
super().__init__('RELATION_OP', convert_ast, name, ast)
class additive_op(operator):
def __init__(self, name: str = None, ast=False):
def convert_ast(additive):
return [self.env.convert_additive(additive) for additive in additive.additive()], {}
super().__init__('ADDITIVE_OP', convert_ast, name, ast)
class mp_op(operator):
def __init__(self, name: str = None, ast=False):
def convert_ast(mp):
return [self.env.convert_mp(mp) for mp in mp.mp()], {}
super().__init__('MP_OP', convert_ast, name, ast)
class postfix_op(operator):
def __init__(self, name: str = None, ast=False):
# unsupported ast so do nothing
def convert_ast(result):
return [result], {}
super().__init__('POSTFIX_OP', convert_ast, name, ast)
class reduce_op(operator):
def __init__(self, name: str = None, ast=False):
def convert_ast(reduceit):
# reduceit: REDUCE_OP subsupassign mp;
symbol, sub, sup = self.env.convert_subsupassign(reduceit.subsupassign())
assert sub is not None and sup is not None
mp = self.env.convert_mp(reduceit.mp())
if symbol is None:
# get the first symbol in mp
symbol = mp.free_symbols.pop()
return [mp, (symbol, sub, sup)], {}
super().__init__('REDUCE_OP', convert_ast, name, ast)
class func(operator):
def __init__(self, name: str = None, ast=False):
def convert_ast(func):
func_args = func.args()
if func_args:
args = [self.env.convert_relation(
arg) for arg in func_args.relation()]
else:
args = [self.env.convert_mp(func.mp())]
return args, {}
super().__init__('FUNC', convert_ast, name, ast)
class func_mat(operator):
def __init__(self, name: str = None, ast=False):
def convert_ast(matrix):
mat = [[self.env.convert_relation(
arg) for arg in args.relation()] for args in matrix.mat_args().args()]
return [mat], {}
super().__init__('FUNC_MAT', convert_ast, name, ast)
class constant:
def __init__(self, name: str = None, ast=False):
self.type = 'CONSTANT'
self.name = name
self.func = None
self.env = env
def __call__(self, func):
assert isinstance(func, Callable)
if self.name is None:
name = func.__name__
assert name.startswith(
'convert_'), f'function name "{name}" should start with "convert_"'
assert len(name) > len('convert_')
self.name = name[len('convert_'):].replace('_dot_', '.')
self.func = func
self.env.define_symbol_base(self.name.split('_')[0])
self.env.id2func[self.name] = self.func
return self.func
def __repr__(self):
return f'{self.type}(name = {self.name})'
return operator, relation_op, additive_op, mp_op, postfix_op, reduce_op, func, func_mat, constant
if __name__ == '__main__':
convertor = TypstMathConverter()
operator, relation_op, additive_op, mp_op, postfix_op, reduce_op, func, func_mat, constant = convertor.get_decorators()
@func()
def convert_sin(x):
return sympy.sin(x)
@func_mat()
def convert_mat(mat):
return sympy.matrices.Matrix(mat)
convertor.define_symbol_base('x')
convertor.define_symbol_base('y')
convertor.define_symbol_base('z')
expr = convertor.sympy('1 + sin^2 1/2 + x + 1')
typst = convertor.typst(sympy.simplify(expr))
assert typst == 'x + (sin(1/2))^2 + 2'
expr = convertor.sympy('(x y)^y^(z+1)')
typst = convertor.typst(sympy.simplify(expr))
assert typst == '(x y)^y^(z + 1)'
expr = convertor.sympy('mat(x + y, 2; z, 4)')
typst = convertor.typst(sympy.simplify(expr))
assert typst == 'mat(x + y, 2; z, 4)'
convertor.define_function('f_1')
expr = convertor.sympy('f_1^2(1) + f_1(1)')
typst = convertor.typst(sympy.simplify(expr))
assert typst == '(f_1(1) + 1) f_1(1)'
expr = convertor.sympy('x * y * z')
typst = convertor.typst(expr)
assert typst == 'x y z'
expr = convertor.sympy('(x + 1) * y * z')
typst = convertor.typst(expr)
assert typst == 'y z (x + 1)'
expr = convertor.sympy('(x + 1) * y^(1/2)')
typst = convertor.typst(expr)
assert typst == 'sqrt(y) (x + 1)'
expr = convertor.sympy('|x|')
typst = convertor.typst(expr)
assert typst == '|x|'
expr = convertor.sympy('integral_1^2 x^2 dif x')
typst = convertor.typst(expr)
assert typst == 'integral_1^2 x^2 dif x'