-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
executable file
·1192 lines (923 loc) · 39.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
#import pystan
import sklearn
import sklearn.linear_model
import numpy as np
import scipy
import pandas as pd
import util
import collections
import crowd
schools_code = """
data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
real mu;
real<lower=0> tau;
real eta[J];
}
transformed parameters {
real theta[J];
for (j in 1:J)
theta[j] <- mu + tau * eta[j];
}
model {
eta ~ normal(0, 1);
y ~ normal(theta, sigma);
}
"""
schools_dat = {'J': 8,
'y': [28, 8, -3, 7, -1, 1, 18, 12],
'sigma': [15, 10, 16, 11, 9, 11, 10, 18]}
#fit = pystan.stan(model_code=schools_code, data=schools_dat,
# iter=1000, chains=4)
model1 = """
data {
int n; // number of items
int m; // number of workers
int k; // number of observations (wid, label)
matrix[3, 3] cm[m]; // confusion matrix, provided as data
//real f[n]; // features
int l[k]; // crowd label
int wid[k]; // worker id
int iid[k]; // instance id
}
parameters {
simplex[3] z[n]; // true label
}
model {
real ps[3];
for (i in 1:k)
//l[k] ~ categorical(cm[wid[k][z[iid[k]]]])
for (j in 1:3)
ps[j] = log(z[iid[k]][j]) + log(cm[wid[i]][j][l[i]]);
target += log_sum_exp(ps);
}
"""
model1_data = {'n': 3,
'm': 2,
'k': 7,
'cm': [[ [.8, .1, .1], [.1, .8, .1], [.1, .1, .8] ],
[ [.8, .1, .1], [.1, .8, .1], [.1, .1, .8] ] ],
'l': [1, 1, 1, 1, 1, 1, 1],
'wid': [1, 2, 1, 1, 2, 2, 1],
'iid': [1, 1, 1, 1, 1, 1, 1],
}
fact_model = """
"""
fact_data = {'n': 2, # number of stances
'm': 1, # number of workers
'k': 1, # number of claims
'o': 1, # number of sources
# triplet of (claim, stance, source)
'nl': 2,
'list_claim': [1, 1],
'list_stance': [1, 2],
'list_source': [1, 1],
#stance labels
'ns': 4, # number of observations (wid, label)
'stance_l': [3, 3, 3, 3], # label
'stance_wid': [1, 1, 1, 1], #worker id
'stance_iid': [1, 1, 2, 2], #stance id
# claim labels
'nc' : 1 , # number of observations (wid, label)
'claim_l' : [3] , #label
'claim_wid' : [1] , # worker id
'claim_iid' : [1] , # instance id
# source labels
'no': 1 , # number of observations (wid, label)
'source_l': [3] , #label
'source_wid': [1] , # worker id
'source_iid': [1] , # instance id
'c': [-1, 1]
}
class gibbs_sampler:
def __init__(self, data, p_s, vera, seed = 1, burn = 500, pc = 1, pv = 1, muc = 0):
"""
data : include list of (claim, stance, source)
p_s : categorial parameter for s (size n x 3) each row = (against, observe, for)
vera : veracity scores of the claims (could be known or unknown)
"""
# n: number of stances
# m: number of claims
# o: number sources
self.n = data.articleCount.max()
self.m = data.claimCount.max()
self.o = data.sourceCount.max()
self.d = self.process_data(data)
self.p_s = np.asarray(p_s)
self.vera = vera
self.rs = np.random.RandomState(seed)
self.burn = burn
self.init_pc = pc
self.init_pv = pv
self.init_muc = muc
self.init_sampler()
def process_data(self, data):
d = data[['claimCount', 'articleCount', 'sourceCount']]
d = d - 1 # 1-index to 0-index
d = np.array(d)
return d
def init_sampler(self):
self.s = np.zeros((self.n,))
x = self.rs.rand(self.n)
p_s = self.p_s
self.s[:] = 1
self.s[x < p_s[:, 0] + p_s[:, 1]] = 0
self.s[x < p_s[:, 0]] = -1
self.v = np.zeros((self.m,))
for i in range(self.m):
self.v[i] = self.vera[i] if self.vera[i] else 0
self.c = np.zeros((self.o,))
self.pc = self.init_pc
self.pv = self.init_pv
self.muc = self.init_muc
def eval_mu_v(self):
"""
evaluate the mean of V (veracity)
"""
self.muv = np.zeros((self.m,))
for claim, stance, source in self.d:
self.muv[claim] += self.s[stance] * self.c[source]
def update_ps(self):
"""
update the categorical parameters for s
"""
p_s = self.p_s.copy()
map_j = [-1, 0, 1]
self.eval_mu_v()
mu = self.muv
sigma_v = pow(1/self.pv, 0.5)
for claim, stance, source in self.d:
i = stance
for j in range(3):
new_mu = mu[claim] - self.s[i] * self.c[source] + map_j[j] * self.c[source]
p_s[i][j] = p_s[i][j] * scipy.stats.norm.pdf(self.v[claim], new_mu,\
sigma_v)
# normalize for p_s to sum to 1
if np.sum(p_s[i]) <=0:
p_s[i] = self.p_s[i].copy()
#print claim, stance, source
p_s[i] = p_s[i] * 1.0 / np.sum(p_s[i])
return p_s
def eval_pos_c(self):
"""
evaluate the posterior for c
"""
# posterior mean and precision
self.pc_m = np.zeros((self.o,))
self.pc_p = np.zeros((self.o,))
self.eval_mu_v()
sum_sx = np.zeros((self.o,))
sum_ss = np.zeros((self.o,))
for claim, stance, source in self.d:
sum_ss[source] += self.s[stance] * self.s[stance]
sum_sx[source] += self.s[stance] * (self.v[claim] - self.muv[claim] + \
self.s[stance] * self.c[source])
for source in range(self.o):
self.pc_p[source] = self.pc + self.pv * sum_ss[source]
self.pc_m[source] = (self.pc * self.muc + self.pv * \
sum_sx[source]) / self.pc_p[source]
def sample_c(self):
# posterior precision
self.make_f()
self.pc_p = self.pc * np.eye(self.o) + self.pv * self.f.T.dot(self.f)
# posterior mean
inv_p = np.linalg.inv(self.pc_p)
mu0 = np.ones(self.o) * self.muc # prior mean
self.pc_m = inv_p.dot(self.pc * np.eye(self.o).dot(mu0) + \
self.pv * self.f.T.dot(self.v))
self.c = self.rs.multivariate_normal(self.pc_m, inv_p)
#self.c = self.pc_m
def sample(self, nit = 2000):
self.save_s = np.zeros((nit, self.n))
self.save_v = np.zeros((nit, self.m))
self.save_c = np.zeros((nit, self.o))
self.save_pc = np.zeros((nit,))
self.save_pv = np.zeros((nit,))
self.save_muc = np.zeros((nit,))
self.save_muv = np.zeros((nit, self.m))
# sample S
for it in range(nit):
p_s = self.update_ps()
x = self.rs.rand(self.n)
self.s[:] = 1
self.s[x < p_s[:, 0] + p_s[:, 1]] = 0
self.s[x < p_s[:, 0]] = -1
# sample V
self.eval_mu_v()
sd_v = pow( 1.0 / self.pv, 0.5)
for claim in range(self.m):
if self.vera[claim] != None:
self.v[claim] = self.vera[claim]
else:
self.v[claim] = self.rs.normal(self.muv[claim], sd_v)
#sample C
self.sample_c()
# update pv, pc, muc
self.eval_mu_v()
ss_v = 0;
for claim in range(self.m): ss_v += pow(self.v[claim] - self.muv[claim], 2)
self.pv = self.rs.gamma(self.m/2.0 + 1, 1.0 / (ss_v/2.0) )
ss_c = np.sum(pow(self.c - self.muc, 2))
self.pc = self.rs.gamma(self.o/2.0 + 1, 1.0 / (ss_c/2.0) )
self.muc = self.rs.normal(sum(self.c) * 1.0 / self.o, \
pow(1.0 / (self.pc*self.o), 0.5) )
# save samples
self.save_s[it, :] = self.s.copy()
self.save_v[it, :] = self.v.copy()
self.save_c[it, :] = self.c.copy()
self.save_pv[it] = self.pv
self.save_pc[it] = self.pc
self.save_muc[it] = self.muc
self.save_muv[it, :] = self.muv
def map_stance(self):
a = self.save_s[self.burn:, :]
res = []
dic_s = {-1: 'against', 0: 'observing', 1: 'for'}
for i in range(self.n):
ct = collections.Counter(a[:, i])
res.append(dic_s[int(ct.most_common()[0][0])])
return res
def map_veracity(self, t = 0.5):
a = self.save_v[self.burn:, :]
b = np.mean(a, 0)
res = []
for i in range(self.m):
if b[i] < -t:
r = 'false'
elif b[i] < t:
r = 'unknown'
else:
r = 'true'
res.append(r)
return res
def check_dup(self):
self.check = np.zeros((self.m, self.o))
for claim, stance, source in self.d:
if self.check[claim, source] != 0:
print(claim, stance, source)
self.check[claim, source] = stance
def make_f(self):
self.f = np.zeros((self.m, self.o))
for claim, stance, source in self.d:
self.f[claim, source] += self.s[stance]
def baseline_gibbs(train_data, X_train, test_data, X_test, t = 0.5):
clf_stance = sklearn.linear_model.LogisticRegression(solver='liblinear')
clf_stance.fit(X_train, map_stance_label(train_data.articleHeadlineStance))
p = clf_stance.predict(X_test)
(data_all, p_s, vera) = run(train_data, X_train, test_data, X_test)
gs = gibbs_sampler(data_all, p_s, vera)
gs.s[-len(p):] = p
# make features:
f = np.zeros((gs.m, gs.o))
for claim, stance, source in gs.d:
f[claim, source] += gs.s[stance]
#import mord
#reg = mord.LAD()
reg = sklearn.linear_model.LinearRegression(fit_intercept = False)
#reg = sklearn.linear_model.LogisticRegression(fit_intercept = False)
reg.fit(f[:180], vera[:180])
b = reg.predict(f[180:])
res = []
for i in range(60):
if b[i] < -t:
r = 'false'
elif b[i] < t:
r = 'unknown'
else:
r = 'true'
res.append(r)
return res
dics = {'against': -1, 'observing': 0, 'for': 1}
dicv = {'false': -1, 'unknown': 0, 'true': 1}
def map_stance_label(l):
return [dics[x] for x in l]
def run(train_data, X_train, test_data, X_test, em_it = 3, return_data = True):
clf_stance = sklearn.linear_model.LogisticRegression(solver='liblinear')
clf_stance.fit(X_train, map_stance_label(train_data.articleHeadlineStance))
data_all = pd.concat([train_data, test_data], ignore_index = True)
#X_all = scipy.sparse.vstack([X_train, X_test])
# prepare data for gibbs sampler
pt = clf_stance.predict_proba(X_test)
p_s = np.zeros((X_train.shape[0], 3))
for i, s in enumerate(train_data.articleHeadlineStance):
j = dics[s] + 1
p_s[i][j] = 1.0
p_s = np.vstack((p_s, pt))
vera = util.extract_truth_labels(train_data)[1]
test_claims = sorted(test_data.claimCount.unique().tolist())
vera = [dicv[x] for x in vera]
vera.extend([None] * len(test_claims))
if return_data:
return (data_all, p_s, vera)
for it in range(em_it):
# E-step: sampling posterior
gs = gibbs_sampler(data_all, p_s, vera)
# M-step: fit clf
pass
class model:
def __init__(self, train_data, X_train, test_data, X_test, seed = 1, \
sample_its = 2000, burn = 500):
self.data_all = pd.concat([train_data, test_data], ignore_index = True)
self.n = self.data_all.articleCount.max()
self.m = self.data_all.claimCount.max()
self.o = self.data_all.sourceCount.max()
self.n_train = len(train_data)
self.n_test = len(test_data)
self.train_data = train_data
self.test_data = test_data
self.X_train = X_train
self.X_test = X_test
self.X = scipy.sparse.vstack((X_train, X_test))
self.d = self.process_data(self.data_all)
self.rs = np.random.RandomState(seed = seed)
self.burn = burn
self.dics = {'against': 0, 'observing': 1, 'for': 2}
self.dicv = {'false': 0, 'unknown': 1, 'true': 2}
#self.tw = tw # weight for test data
self.sample_its = sample_its
self.burn = burn
def process_data(self, data):
d = data[['claimCount', 'articleCount', 'sourceCount']]
d = d - 1 # 1-index to 0-index
d = np.array(d)
return d
def init_model(self):
# fit stance and vera clf only on train data
self.clf_stance = sklearn.linear_model.LogisticRegression(penalty = 'l1', solver='liblinear')
#self.clf_stance = sklearn.linear_model.SGDClassifier(loss = 'log', n_iter = 5000)
train_stances = [self.dics[x] for x in self.train_data.articleHeadlineStance]
self.clf_stance.fit(self.X_train, train_stances)
# p_s = prob of stance using "labels"
self.ps = np.zeros((self.n_train + self.n_test, 3))
self.s = np.zeros((self.n_train + self.n_test,))
test_stances = self.clf_stance.predict(self.X_test)
for i, s in enumerate(self.train_data.articleHeadlineStance):
j = self.dics[s]
self.ps[i][j] = 1.0
self.s[i] = j
for i in range(self.n_train, self.n_train + self.n_test, 1):
self.ps[i, :] = [1.0/3] * 3
self.s[i] = test_stances[i - self.n_train]
#self.s = self.cat_sample(self.ps)
self.make_features()
self.vera = util.extract_truth_labels(self.train_data)[1]
self.vera = [self.dicv[x] for x in self.vera]
self.train_m = len(self.vera)
self.clf_vera = sklearn.linear_model.LogisticRegression(solver='liblinear')
self.clf_vera.fit(self.f[:self.train_m], self.vera)
test_claims = sorted(self.test_data.claimCount.unique().tolist())
self.test_m = len(test_claims)
self.pv = np.zeros((self.train_m + self.test_m, 3))
for i, j in enumerate(self.vera):
self.pv[i][j] = 1.0
for i in range(self.train_m, self.train_m + self.test_m):
self.pv[i,:] = [1.0/3] * 3
self.v = self.cat_sample(self.pv)
def cat_sample(self, p):
n = len(p)
res = np.zeros((n,))
x = self.rs.rand(n)
res[:] = 2
res[x < p[:, 0] + p[:, 1]] = 1
res[x < p[:, 0]] = 0
return res
def make_features(self):
self.f = np.zeros((self.m, self.o))
#w = [-1, 0, 1]
for claim, stance, source in self.d:
self.f[claim, source] += (self.s[stance] - 1) # 0,1,2 -> -1, 0 1
#for j in range(3):
#self.f[claim, source] += w[j] * self.ps[stance, j]
#self.f = scipy.sparse.csr_matrix(self.f)
def normalize(self, p):
m = p.shape[1]
s = np.sum(p, 1)
s = s.reshape((s.shape[0], 1))
s = np.repeat(s, m, 1)
return p / s
def sample_s(self, ps):
"""
ps = (updated) prior for s
"""
intercept = self.clf_vera.intercept_
w = self.clf_vera.coef_.T
res = np.ones((self.n, 3))
for claim, stance, source in self.d:
self.f[claim, source] -= (self.s[stance] - 1)
x = intercept + self.f[claim].dot(w) # if sparse matrix, need to take first row
#x -= (self.s[stance] - 1) * w[source] #
# res = prob of V given each value of S
res[stance, 0] = util.softmax(x - w[source])[int(self.v[claim])]
res[stance, 1] = util.softmax(x )[int(self.v[claim])]
res[stance, 2] = util.softmax(x + w[source])[int(self.v[claim])]
prob = res[stance] * ps[stance]
prob = prob / (np.sum(prob))
# sample new S
self.s[stance]= self.rs.choice(list(range(3)), p = prob)
# replace S
self.f[claim, source] += (self.s[stance] - 1)
return res
def sample_vs(self):
"""
Gibbs sampling for veracity and stance
"""
n_its = self.sample_its
# classifiers for each iteration of Gibbs
#self.sgd_stance = sklearn.linear_model.SGDClassifier(loss = 'log')
self.it_stance = sklearn.linear_model.LogisticRegression(penalty = 'l1', solver="liblinear")
#self.sgd_vera = sklearn.linear_model.SGDClassifier(loss = 'log')
self.it_vera = sklearn.linear_model.LogisticRegression(solver="liblinear")
# vars to save Gibbs samples
self.save_s = np.zeros((n_its, self.n))
self.save_v = np.zeros((n_its, self.m))
self.save_clf_stance_it = np.zeros((n_its, 3))
self.save_clf_stance_co = np.zeros((n_its, 3, 518)) # 518 = # text features
self.save_clf_vera_it = np.zeros((n_its, 3))
self.save_clf_vera_co = np.zeros((n_its, 3, self.o))
for it in range(n_its):
# sample V
if it % 100 == 0: print(it, end=' ')
# calculate p(v| ...)
self.make_features()
pf = self.clf_vera.predict_proba(self.f)
pos_v = pf * self.pv
pos_v = self.normalize(pos_v)
self.v = self.cat_sample(pos_v)
# sample S
#pos_s = self.ps.copy()
pf = self.clf_stance.predict_proba(self.X)
#ps_v = self.update_ps()
#pos_s = pos_s * pf * ps_v
#pos_s = self.normalize(pos_s)
#self.s = self.cat_sample(pos_s)
ps = self.ps * pf
self.sample_s(ps)
self.save_s[it, :] = self.s
self.save_v[it, :] = self.v
# train clf for vera and stance and save
if it > self.burn:
self.make_features()
#v_w = [1] * self.train_m + [self.tw] * self.test_m
#s_w = [1] * self.n_train + [self.tw] * self.n_test
for sgd_it in range(1):
#self.sgd_vera.partial_fit(self.f, self.v, [0,1,2], sample_weight = v_w)
#self.sgd_stance.partial_fit(self.X, self.s, [0,1,2], sample_weight = s_w)
self.it_vera.fit(self.f, self.v)
self.it_stance.fit(self.X, self.s)
self.save_clf_stance_it[it, :] = self.it_stance.intercept_.copy()
self.save_clf_stance_co[it, :, :] = self.it_stance.coef_.copy()
self.save_clf_vera_it[it, :] = self.it_vera.intercept_.copy()
self.save_clf_vera_co[it, :, :] = self.it_vera.coef_.copy()
def m_step(self):
self.clf_stance.intercept_ = np.mean(self.save_clf_stance_it[self.burn:, ], 0)
self.clf_stance.coef_ = np.mean(self.save_clf_stance_co[self.burn:, :, :], 0)
self.clf_vera.intercept_ = np.mean(self.save_clf_vera_it[self.burn:, :], 0)
self.clf_vera.coef_ = np.mean(self.save_clf_vera_co[self.burn:], 0)
def e_step(self):
self.sample_vs()
def em(self, em_its = 5):
"""
M-step: solve for stance/veracity classification
under the expected labels
"""
for it in range(em_its):
self.e_step()
#self.clf_stance = self.sgd_stance
#self.clf_vera = self.sgd_vera
self.m_step()
# save prediction for stance/vera
self.res_s = self.map_stance()
self.res_v = self.map_veracity()
def num2_stance(self, l):
dics = {0: "against", 1: "observing", 2: "for"}
return [dics[x] for x in l]
def num2_vera(self, l):
dicv = {0: "false", 1: "unknown", 2: "true"}
return [dicv[x] for x in l]
def map_stance(self):
"""
return most common stance for each stance var
over the samples.
"""
a = self.save_s[self.burn:, :]
res = []
dic_s = {0: 'against', 1: 'observing', 2: 'for'}
for i in range(self.n):
ct = collections.Counter(a[:, i])
res.append(dic_s[int(ct.most_common()[0][0])])
return res
def map_veracity(self, t = 0.5):
a = self.save_v[self.burn:, :]
dic_v = {0: 'false', 1: 'unknown', 2: 'true'}
res = []
for i in range(self.m):
ct = collections.Counter(a[:, i])
res.append(dic_v[int(ct.most_common()[0][0])])
return res
def run_em(train_data_pp, X_train , val_data_pp, X_val, seed = 1):
m = model(train_data_pp, X_train, val_data_pp, X_val, seed = 1, \
sample_its = 2000, burn = 1000)
m.init_model()
for i in range(5):
print(i)
m.em(1)
res_s = m.map_stance()
res_v = m.map_veracity()
print(util.get_acc(val_data_pp, res_s[1489:], res_v[180:]))
res_v1 = m.num2_vera(m.clf_vera.predict(m.f))
res_s1 = m.num2_stance(m.clf_stance.predict(m.X))
print(util.get_acc(val_data_pp, res_s1[1489:], res_v1[180:]))
def get_expert_df(data, expert_range):
new_cdata = []
for i in range(len(data)):
aid = data.iloc[i]['articleCount']
if aid in expert_range:
lab = data.iloc[i]['articleHeadlineStance']
new_cdata.append([aid, lab, 'EXPERT', lab])
new_cdata = pd.DataFrame(new_cdata, columns = ['aid', 'ans', 'wid', 'gold'])
return new_cdata
def prepare_cm_data(train_data, X_train, test_data, X_test, cdata, \
expert_range = [], train_range = 1489,\
test_range = 2071):
"""
cdata: raw crowd data for stances
expert: range of article id to have expert label
output cds and cdv
"""
data_all = pd.concat([train_data, test_data], ignore_index = True)
X = scipy.sparse.vstack((X_train, X_test))
# append expert data to cdata:
# take train portion in crowd data
cdata_train = cdata[cdata.aid <= train_range]
cdata_test = cdata[(cdata.aid > train_range) & (cdata.aid <= test_range)]
expert_train = get_expert_df(train_data, expert_range)
train_cdata = pd.concat([cdata_train, expert_train], ignore_index = True)
expert_test = get_expert_df(test_data, expert_range)
test_cdata = pd.concat([cdata_test, expert_test], ignore_index = True)
# build veracity data
vera = util.extract_truth_labels(train_data)[1]
n = len(vera)
vera_data = pd.DataFrame({'aid': list(range(1, n+1, 1)),\
'ans': vera, \
'wid': 'EXPERT'})
cds = crowd.CD(train_cdata)
cdv = crowd.CD(vera_data, labtype='vera')
cds_test = crowd.CD(test_cdata)
return (data_all, X, cds, cdv, cds_test)
class crowd_model(model):
def __init__(self, data_all, X, cds, cdv, seed = 1, sample_its = 2000, \
burn = 500, n_train = 2071, vera_range=[0,1,2]):
"""
cds: crowd data for stances
cdv: crowd data for veracity
data_all, X: data and features for both train and test.
n_train: number of train instances (placed before test instances)
inference by Gibbs sampling
"""
self.data_all = data_all
self.X = X
self.cds = cds
self.cdv = cdv
self.n = self.data_all.articleCount.max()
self.m = self.data_all.claimCount.max()
self.o = self.data_all.sourceCount.max()
self.d = self.process_data(self.data_all) # in 0-index
self.rs = np.random.RandomState(seed = seed)
self.dics = {'against': 0, 'observing': 1, 'for': 2}
self.dicv = {'false': 0, 'unknown': 1, 'true': 2}
#self.tw = tw # weight for test data
self.sample_its = sample_its
self.burn = burn
self.n_train = n_train
self.vera_range = vera_range
def init_model(self):
"""
init the stance and claim vera classifier
"""
self.dss = crowd.DS(self.cds, list_expert=[self.cds.expert_wid])
self.dsv = crowd.DS(self.cdv, list_expert=[self.cdv.expert_wid])
self.dss.em(10)
#print "dss 5"
self.dsv.em(1)
# train the stance clf
self.clf_stance = sklearn.linear_model.LogisticRegression(penalty = 'l1', solver="liblinear")
n = self.n_train # number of stances existing crowd labels
# assume that articles with lables are at the top
X3 = scipy.sparse.vstack((self.X[:n], self.X[:n], self.X[:n]))
#X3 = scipy.sparse.vstack((self.X, self.X, self.X))
#y = np.asarray([0]*self.n + [1] * self.n + [2] * self.n)
y = np.asarray([0] * n + [1] * n + [2] * n)
self.aids = list(self.data_all.articleCount)
self.dss.get_full_pos(self.aids[:n])
weights = self.dss.full_pos.flatten(order = 'F')
#print X3.shape, y.shape, weights.shape
self.clf_stance.fit(X3, y, sample_weight = weights)
#self.clf_stance.fit(self.X[:n], self.dss.mlc)
#print "trained"
# self.ps = factor for s from crowd labels
# self.s = initial values for s
self.dss.get_full_pos(self.aids)
self.n_test = self.n - self.n_train
clf_proba = self.clf_stance.predict_proba(self.X)
self.ps = self.dss.full_pos
self.s = np.argmax(self.ps * clf_proba, 1)
# self.pv = factor for v from crowd labels
# self.v = initial value for v
# assume all labels are from expert
self.make_features()
self.train_m = len(self.dsv.pos)
self.clf_vera = sklearn.linear_model.LogisticRegression(solver='liblinear')
self.vera = np.argmax(self.dsv.pos, 1)
self.clf_vera.fit(self.f[:self.train_m], self.vera )
self.pv = np.zeros((self.m, 3))
for i, j in enumerate(self.vera):
self.pv[i][j] = 1.0
for i in range(self.train_m, self.m):
self.pv[i,:] = [1.0/3] * 3
self.v = self.cat_sample(self.pv)
def get_dist(self, save):
"""
empirical distribution from samples
"""
a = save[self.burn:, :]
s0 = np.sum(a == 0, 0)
s1 = np.sum(a == 1, 0)
s2 = np.sum(a == 2, 0)
sa = np.sum([s0, s1, s2], 0) + 1e-9
s0 = s0 / sa
s1 = s1 / sa
s2 = s2 / sa
return np.vstack((s0, s1, s2)).T
def m_step(self):
model.m_step(self)
# estimate confution matrices
#a = self.save_s[self.burn:, :self.n_train]
dist_s = self.get_dist(self.save_s)
# set posterior to be empirical distribution over Gibbs samples
self.dss.set_pos(dist_s, self.aids)
# run dss M-step and E-step
self.dss.m_step()
self.dss.e_step()
# update self.ps
#uniform = 1.0/3 * np.ones((self.n - self.n_train, 3))
#self.ps = np.vstack((self.dss.pos, uniform))
self.ps = self.dss.get_full_pos(self.aids)
dist_v = self.get_dist(self.save_v)
self.pos_v = dist_v
def get_res(self, n_train = None, n_train_vera = None):
"""
return ps, pt, pp_s, pp_t for test instances
"""
ps = self.map_stance()[n_train:]
pt = self.map_veracity()[n_train_vera:]
pp_s = self.get_dist(self.save_s)[n_train:, :]
pp_t = self.get_dist(self.save_v)[n_train_vera:, :]
return (ps, pt, pp_s, pp_t)
class model_cv(crowd_model):
"""
crowd model with inference by variational method
"""
#def __init__(self, data_all, X, cds, cdv, seed = 1, sample_its = 2000, \
# burn = 500, n_train = 2071):
# crowd_model.__init__(self, data_all, X, cds, cdv, seed = 1, sample_its = 2000, \
# burn = 500, n_train = 2071)
# self.vera_range = [0,1,2]
def make_expected_features(self):
self.ef = np.zeros((self.m, self.o))
for claim, stance, source in self.d:
self.ef[claim, source] += (self.es[stance]) # es is from -1 to 1
def eval_es(self):
"""
evaluate E(S) under q
"""
c = np.asarray([[-1], [0], [1]])
self.es = self.beta.dot(c)
def eval_elog_pv(self):
"""
evaluate E log p(V_i | S, C) under q(S) for each V_i
"""
self.eval_es()
self.make_expected_features()
self.epredictv = self.clf_vera.predict_proba(self.ef)
self.elpv = np.log(self.epredictv)
def e_step(self, n_it = 5):
"""
variational approximation to the posterior p(V, S | Data, params)
is prod_i q(V_i) prod_ij q(S_ij)
where:
q(V_i) = Cat(alpha)
q(S_ij) = Cat(beta)
"""
#self.alpha = 1.0/3 * np.ones((self.m, 3))
self.alpha = self.pv.copy()
#self.beta = 1.0/3 * np.ones((self.n, 3))
self.beta = self.clf_stance.predict_proba(self.X) * self.ps
for it in range(n_it):
# update q(V)
self.eval_elog_pv()
self.alpha = self.epredictv.copy() * self.pv
for i in range(self.m):
self.alpha[i] = self.alpha[i] / np.sum(self.alpha[i])
#update q(S)
pfs = self.clf_stance.predict_proba(self.X) * self.ps
# ep = expected features * weight + intercept
self.ep = self.clf_vera.intercept_ + self.ef.dot(self.clf_vera.coef_.T)
for claim, stance, source in self.d:
# x = ep without this stance
x = self.ep[claim] - self.ef[claim, source] * \
self.clf_vera.coef_[:, source]
for s_val in [0, 1, 2]:
# xs: assume stance is s_val
xs = x + self.clf_vera.coef_[:, source] * (s_val - 1)
# apply softmax
sxs = np.exp(xs) / np.sum(np.exp(xs))
if len(sxs) == 1: #binary case
es = np.log(sxs).dot(self.alpha[claim, 1])
else:
es = np.log(sxs).dot(self.alpha[claim])
np.seterr(divide='ignore')
self.beta[stance][s_val] = np.exp( es + np.log(pfs[stance,s_val]) )
#normalize
self.beta[stance] = self.beta[stance] * 1.0 / np.sum(self.beta[stance])
def m_step(self):
"""
update the classifier and the crowd confusion matrix
"""
X3 = scipy.sparse.vstack((self.X, self.X, self.X))
n = self.n
y = np.asarray([0]*n + [1] * n + [2] * n)
weights = self.beta.flatten(order = 'F')
self.clf_stance.fit(X3, y, sample_weight = weights)
self.eval_es()
self.make_expected_features()
f3 = np.vstack((self.ef, self.ef, self.ef))
m = self.m
y = np.asarray([0]*m + [1] * m + [2] * m)
weights = self.alpha.flatten(order = 'F')
self.clf_vera.fit(f3, y, sample_weight = weights)
self.dss.set_pos(self.beta, self.aids)
self.dss.m_step()
self.dss.e_step()
#uniform = 1.0/3 * np.ones((self.n - self.n_train, 3))
#self.ps = np.vstack((self.dss.pos, uniform))
self.ps = self.dss.get_full_pos(self.aids)
def map_stance(self):
res = []
dic_s = {0: 'against', 1: 'observing', 2: 'for'}
for i in range(self.n):
j = np.argmax(self.beta[i])
res.append(dic_s[j])
return res
def map_veracity(self, t = 0.5):
dic_v = {0: 'false', 1: 'unknown', 2: 'true'}
res = []
for i in range(self.m):
j = np.argmax(self.alpha[i])
res.append(dic_v[j])
return res
def get_res(self, n_train = None, n_train_vera = None):
"""
return ps, pt, pp_s, pp_t for test instances
"""
ps = self.map_stance()[n_train:]
pt = self.map_veracity()[n_train_vera:]
pp_s = self.beta[n_train:, :]
pp_t = self.alpha[n_train_vera:, :]