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1 INTRODUCTION
In the evolving domain of online interactions, social networks play
a crucial role in the propagation and spreading of information and
the maintenance of social connections. However, the vast amounts
of data generated and stored within these platforms raise significant
privacy concerns, mainly through the use of profile-matching at-
tacks. These attacks aim to link discrete data pieces across multiple
platforms to uncover or predict user identities, which could lead to
privacy violations or malicious exploitation of private data. Online
social networks (OSNs) can be categorized into two broad topics:
structured and unstructured networks[1]. Structured networks are
those where user relationships are explicitly defined and can be
visually and functionally represented as graphs. These connections
provide a framework that can be exploited through graph-based
attacks to deduce user identities or attributes by analyzing how
users are interconnected. To give an example of a structured online
social network, we can mention the popular platform Instagram,
which has a follower/following relation between users. Conversely,
unstructured social networks do not rely on explicit relational data
and typically operate through the aggregation of user attributes
and behaviors, making them susceptible to attribute-matching at-
tacks [1]. Here, attackers use distinct pieces of information across
platforms, such as similar usernames, links to other accounts, or
shared content, to link profiles and identify individuals [1]. The
threat of profile matching has led to the development and appli-
cation of various distortion techniques to protect sensitive user
data. These techniques involve altering data in ways that make
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it difficult for attackers to accurately link profiles across different
platforms without substantially impacting the utility of the data
for legitimate or truthful purposes. Such techniques include data
perturbation, noise addition, anonymization, and more sophisti-
cated methods like tokenization and hashing, each serving to hide
or alter data points to protect user privacy [2]. The importance of
these distortion techniques cannot be understated, as they serve
as the primary defense against the ever-increasing sophistication
of profile-matching attacks. Their implementation helps maintain
the integrity and confidentiality of user data, balancing the need
for privacy with the functionality and utility of social networks.
However, the effectiveness of these techniques varies, and their
deployment must be carefully managed to maintain the user expe-
rience and the operational purposes of the data they protect [2]. To
summarize, our topic is “Comparison and Analysis of Distortion
Techniques in Terms of Mitigating the Risk of Profile Matching
Attacks in Online Social Networks.” Thus, this report investigates
the nuances of these challenges, exploring the effectiveness of dif-
ferent distortion techniques comparably in mitigating the risks
associated with profile-matching attacks in online social networks.
By understanding the strengths and limitations of each technique,
we can better protect user privacy while maintaining the robust
functionality of these digital platforms.

Figure 1: OSN Categorization [2][1]

Finally, in the current literature, there doesn’t exist an extensive
survey regarding the performance comparison of the distortion
techniques we tackle. Thus, we propose a novelty by creating a
literature survey and empirical comparison regarding the perfor-
mances of distortion techniques for profile-matching attacks on
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OSNs (in essence, we tried to create a baseline comparison envi-
ronment for every distortion technique, which is a lack in current
works of literature). We also propose two system recommenda-
tions (one for each OSN type) to improve data privacy in online
environments, per our novelty.

2 DETAILS OF SELECTED PROFILE
MATCHING TECHNIQUES

2.1 Attribute Matching
Attribute matching, also known as record linkage, is a technique
used in online social networks (OSNs) and various databases to
identify records that refer to the same entity across different plat-
forms. This process is critical for applications that aim to construct
a detailed view of an individual’s preferences and behaviors by
aggregating data from multiple sources. The matching function
exploits explicit user-provided information, such as usernames and
biographical details, and inferred data from user activities, such as
location stamps and timing of posts. In some cases, these mentioned
attributes are named “Quasi-Idenfitiers.” The technique depends
on the identification of unique or highly indicative, or even unique
attributes that remain consistent across platforms despite potential
efforts by users to vary and perturb their information to maintain
privacy or different online personas. The effectiveness of attribute
matching is significantly enhanced by advanced algorithms that
analyze these attributes for patterns of similarity, often employing
methods such as machine learning to improve accuracy and reduce
false matches. By integrating these diverse data points, attribute
matching not only enables richer user profiles but also raises com-
plex privacy and security implications, as it can unintentionally
expose sensitive information or contribute to identity theft and
other malicious activities. Throughout this essay, we will focus on
security and data privacy implications caused by various attribute
matching techniques. Furthermore, wewill not focus on such attack-
ing techniques because of the lack of sufficient empirical data on the
performance of distortion techniques against attribute-matching
attacks reinforced with machine learning algorithms. Additionally,
we will assume the setting as an unstructured online social network
throughout the discussions for attribute matching attacks. For the
distortion techniques against attribute-matching attacks, we chose
to focus on the following:

• Data Perturbation
• Noise Addition
• Anonymization
• Tokenization
• Hashing
• Suppression
• Generalization

Details regarding these topics will be discussed in further sub-
sections. The main criterion for selecting these techniques is the
wide availability of resources regarding the technical details and
performances of these techniques. As an additional discussion, we
diminished the initial large pool of distortion techniques against
attribute-matching attacks because of either availability problems
regarding the resources or the lack of uniform testing environments,
in some researches performance of techniques is evaluated over a

small set of users while in the others different distortion technique
measured over a whole online social network (such as Instagram).
This caused a varying environment for comparison, which would
result in a biased outcome. [3] [4]

2.1.1 Data Perturbation. Data perturbation is a fundamental
approach within areas including privacy-preserving data mining,
data analysis and related fields. It utilizes methodologies which are
from disciplines such as statistical disclosure control and statistical
databases. It involves modifying the original dataset to release a
perturbed version for analysis while preserving privacy. A key point
in data perturbation is the balance between privacy and data utility.
On the other hand, perturbation techniques must ensure that the
original data cannot be sufficiently reconstructed to reveal sensitive
information.[5] In addition to this, they must allow meaningful
patterns and insights to be extracted from the perturbed data.

Various techniques used in the scope of data perturbation, includ-
ing additive, multiplicative, matrix multiplicative, k-anonymization,
micro-aggregation, categorical data perturbation, data swapping
and resampling. [5] Despite their differences, these techniques share
the common goal of preserving sensitive information in datasets,
making them essential tools in modern data privacy efforts.

2.1.2 Noise Addition. Noise addition serves as a crucial strategy
in achieving the balance between privacy and utility, masking nu-
merical attributes to prevent inference attacks and reconstruction of
sensitive data. By adding noise addition as a perturbation methodol-
ogy, datasets can maintain confidentiality while maintaining their
utility for consumers. [6]

Noise addition techniques, comprising additive and multiplica-
tive noise, are fundamental in protecting personal data. Additive
noise involves introducing random errors into the original data.
Four primary procedures have been established: uncorrelated noise
addition, correlated noise addition, noise addition with linear trans-
formation, and noise addition with non-linear transformation. [7]
Uncorrelated noise addition involves independently adding noise
to each attribute, with the magnitude of noise determined by the
standard deviation. On the other hand, correlated noise addition
generates noise based on an error matrix, resulting in higher an-
alytical predictability. Noise addition with linear transformation
aims to maintain the sample covariance matrix of transformed at-
tributes while non-linear transformation techniques address the
limitations of the former, although requiring significant expertise
and time. Multiplicative noise emerges as a solution to the challenge
of constant variance in additive noise.

Figure 2: Generalized Data Privacy with Noise Addition [8]
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2.1.3 Anonymization. Anonymization is a crucial process em-
ployed when releasing data to prevent the disclosure of sensitive
information about individuals. There are three main types of in-
formation disclosure that anonymization seeks to reduce: iden-
tity, attribute, and inference.[9] Identity disclosure occurs when
anonymization techniques are insufficient, allowing for re-identification
of specific records within the anonymized dataset. [10] For example,
a simple anonymization process that replaces identifiable infor-
mation with sequential numbers could lead to identity disclosure
if the patterns are easily predictable. Attribute disclosure occurs
when new information about individuals is unintentionally revealed.
For instance, anonymized employee records may unintentionally
disclose sensitive information, such as age-related additional in-
centives, which can be inferred based on other known attributes.
Inference disclosure occurs when adversaries can derive confiden-
tial information by correlating anonymized data with other datasets
without directly revealing sensitive information. As anonymization
efforts increase, the practical value of the data decreases. [11]

2.1.4 Tokenization. Tokenization is crucial in the information
retrieval process; it plays an important role in segmenting text into
distinct units, which are known as tokens. These tokens contain
words, numbers, and characters, and their extraction is important
for subsequent analysis. This process involves assessing the fre-
quency of each token within the input documents, promoting a
deeper understanding of the text. [12]

The tokenization process is described in several phases where
documents are collected for word extraction. Later, infrequent
words are eliminated, enhancing the efficiency of the tokenization
process. Stop word removal follows, targeting redundant English
words that offer minimal value in information retrieval. This phase
not only reduces the size of indexing files but also enhances over-
all efficiency, contributing to the effectiveness of the tokenization
process. [13]

2.1.5 Hashing. Hashing plays a crucial role in ensuring data pri-
vacy and security. Hashing involves the transformation of input
data of arbitrary size into a fixed-size string of characters, known
as a hash value or hash code. One of the key characteristics of hash-
ing is its deterministic nature, meaning that the same input will
always produce the same hash value. This property enables efficient
storage and retrieval of data, as it allows for rapid comparisons
between hash values, not the original data itself. Commonly used
hashing algorithms are MD5 (Message Digest Algorithm 5) and
SHA-1 (Secure Hash Algorithm 1). [14]

Hashing methods are widely utilized in various applications,
ranging from data verification and authentication to password stor-
age. In password storage, for instance, hashing ensures that pass-
words are securely stored without being directly accessible in their
plain-text form. When a user inputs their password, the system
hashes the input and compares it with the stored hash value. If the
two hashes match, authentication is successful without the need
to store the actual password. In addition to password protection,
hashing can also be used to protect other sensitive information,
such as address information.

2.1.6 Suppression. Suppression techniques are essential in privacy-
preserving data mining, particularly in situations where extract-
ing valuable understanding is necessary while maintaining the
confidentiality of individuals’ information. With the increasing
availability of personal data and the advancement of data min-
ing algorithms, concerns regarding privacy violations have grown
significantly. Techniques such as classification, k-anonymity, as-
sociation rule mining, and clustering have emerged as potential
solutions to address these concerns. [15]

An illustrative instance of suppression could be the airport secu-
rity of the scenario where passenger information records contain
sensitive personal data such as names, passport numbers, demo-
graphic details, and flight information. To protect individual privacy,
suppression techniques can be applied to de-identify the dataset
by removing unique identity fields. However, even after such mea-
sures are taken, there remains the risk of identifying individuals
through other available data attributes. Thus, the development of
effective data mining algorithms for privacy preservation becomes
crucial. This emphasizes the importance of ongoing research in
this field, aiming to compare and contrast different approaches and
develop frameworks for preserving privacy while extracting valu-
able understandings from data. Moreover, intentional distortion of
information through suppression can lead to artificial inferences
that are inaccurate and serve specific purposes with the reported
values. Conversely, suppression may not be suitable when data
mining necessitates full access to sensitive values. In such cases,
limiting the identity link of a record may be a preferred method for
preserving privacy. [16]

2.1.7 Generalization. Generalization techniques are important
in various machine learning tasks such as classification, regression,
and clustering. This concept is aimed at ensuring that the model
can capture fundamental patterns and make reliable predictions on
new instances. In classification tasks, a well-generalized model can
accurately classify new instances into defined categories based on
the patterns learned from the training data. In regression tasks, a
generalized model can effectively predict continuous outcomes for
hidden data points. [17] Generalization involves not only selecting
appropriate algorithms but also processing the data and evaluat-
ing the model’s performance to ensure that it can generalize well
beyond the training data.[18]

2.2 Graph-Based Attacks
Graph-based attacks in online social networks focus on exploit-
ing the social graph—representing users and their connections—to
link sanitized (anonymized) and desanitized (original) data graphs.
These attacks attempt to re-identify anonymized nodes by exploit-
ing graph structures and user attributes. By analyzing the connec-
tions and similarities between nodes in the sanitized graph and
comparing them with publicly available or desanitized graphs, at-
tackers can infer identities or sensitive attributes that were meant
to be protected. This technique leans on the inherent relational
data within social networks, where even indirect connections, such
as friends of friends, can provide enough information to breach
privacy. The effectiveness of these attacks increases with the avail-
ability of auxiliary data and the improvements of algorithms used
to analyze graph topologies and attribute correlations, potentially
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causing significant risks to user anonymity and data confidentiality
in online social networks [19]. We could mention their primary
use case settings for comparing graph-based attacks to attribute-
matching attacks. The graph-based attack techniques are evaluated
under structured online social networks, while attribute matching
techniques are looked at under unstructured online social networks.
The leading cause of this difference originates from the fact that
graph-based techniques utilize connections between users rather
than solely focusing on the attributes of individual records. Thus,
even though attribute matching and graph-based techniques use
comparable and similar algorithms underneath, the settings they
operate in are different. Throughout this essay, we will focus on
the implications of security and data privacy caused by various
graph-based attacking techniques. For the distortion techniques
mitigating the graph-based attacks, we chose to focus on are as
follows:

• Modification Method
• Clustering Method
• Privacy-Aware Graph Computing-Based(PAGC) Method
• Differential Privacy-Based
• Hybrid

Details regarding these topics will be discussed in further sub-
sections. The main criterion for selecting these techniques is the
wide availability of resources regarding the technical details and
performances of these techniques. A similar comment can be made,
as attribute matching attacks, for our selection process, in which
we reduced an initial large pool of possible distortion techniques
for graph-based attacks. We also decided not to include artificial
intelligence-based graph-altering methods because we already in-
vestigate computer vision-based attacks and distortion techniques
specifically. Thus, this discussion would merely act as a duplication
of the same techniques applied to different scenarios, which is out
of the scope of this essay. Finally, the hybrid method is addedmerely
to observe whether the heuristic of combining multiple methods in
one attack is actually effective. [19]

2.2.1 Modification Method. Graph modification methods play
a critical role in preserving privacy in structured online social
networks. These methods involve strategic alterations and modifi-
cations to the graph’s structure, which represents the network of
user connections, to prevent malicious entities, namely attackers,
from accurately deducing personal or sensitive information about
the network’s users. The primary aim of graph modification is to
conceal the original, often sensitive, structure of the social network.
This is achieved by adding or deleting nodes and edges or by al-
tering their attributes in a way that the modified graph remains
practically useful while significantly reducing the risk of privacy
breaches. In essence, the main goal of this distortion technique is
to modify the topological structure of the graph while preventing
loss of utility. The two main categories that are possible to mention
under graph modification methods are as follows:

Adding and Deleting Edges: By introducing new edges between
nodes or removing existing ones, the apparent relationships and
interaction patterns among users are changed. This can prevent
attackers from confirming hypotheses about social connections or
inferring new connections based on known patterns. Another type
of possible edge modification is rewiring already existing edges.

However, it should be considered that these types of modifications
can heavily affect the utility of graphs representing the social con-
nections within the platform. [19]

NodeModification:Modifying nodes involves changing the node’s
attributes or its entire identity within the graph. This might include
changing demographic details, user behaviors, or any other quasi-
identifiers that could be used for linking profiles across platforms
or within the same platform. This type of modification also pre-
vents users’ data from attribute matching attacks, which focuses
on identifying data other than the connections between users. [19]

Figure 3: Graph Modification by Adding and Deleting Edges
[19]

These methods are vital for maintaining the utility of the OSN
while protecting user privacy. They balance between altering the
graph enough to prevent accurate profile matching and maintaining
enough structure to keep the network functional and informative.
Effective implementation of graph modification methods can sig-
nificantly reduce the risk of privacy attacks without degrading the
user experience or the analytical value of the data for legitimate
purposes. Additionally, all the mentioned graph modification meth-
ods can also be utilized by adding dummy nodes (vertices) to the
graph, which is a better approach for preventing the loss of utility
compared to altering original connections. [19]

2.2.2 ClusteringMethod. Graph clustering, also known as graph
generalization, clusters nodes, and edges into super nodes and
super edges, respectively, to protect sensitive user information
from being exposed through graph-based attacks. The essence of
graph clustering is to create a coarser version of the original graph
where multiple nodes are grouped into a single super node. This
approach effectively reduces the granularity of the graph, making
it difficult for attackers to identify individual users or distinguish
(de-anonymize) specific user attributes [19]. By clustering similar
nodes together, the method masks the precise details of individual
connections, thereby preserving the privacy of the users’ identities
and their interactions within the network.

Regarding how clustering algorithms work, they rely on group-
ing nodes that share similar attributes or connection patterns. Thus,
not only the characteristics of individual nodes are essential but
the connections and degrees of nodes are also crucial. This not
only confuses the trail for potential attackers but also maintains the
utility of the graph for legitimate analysis for scientists, like commu-
nity detection or network structure analysis [19]. Additionally, the
super edges, connections between super nodes, reflect the overall
connectivity pattern among clusters, not individual relationships.

In terms of graph publishing, clustering methods can be tailored
to the needs of the researchers. For example, in a social network
graph, users within the same geographical area or with similar
interests might be clustered together to form a super node, hiding
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Figure 4: Graph Clustering Example [19]

individual user details but allowing analysis of broader commu-
nity trends. So, researchers whose concern is the analysis of some
specific interests can use these anonymized graphs without losing
none-to-zero utility. This is one of the key differences between the
clustering method and the graph modification method. For lim-
itations, while clustering enhances privacy, it must be carefully
designed to avoid under or over-clustering. Over-clustering may
lead to a significant loss of useful information (utility), potentially
rendering the graph useless for certain types of analyses. Under-
clustering, on the other hand, might not provide enough privacy
protection, leaving the data vulnerable to inference attacks.

Graph clustering methods are typically evaluated based on their
ability to balance the trade-off between data utility and privacy.
Effective clustering algorithms are those that maximize the entropy
(a measure of information rate over a specific channel in which
certain pairs can be confounded) [20] in each super node while
maintaining enough structural information in the graph for analysis
purposes.

2.2.3 Privacy-AwareGraphComputing (PAGC)Method. Privacy-
aware graph Computing (PAGC) methods are advanced privacy-
preserving techniques that utilize computational algorithms to pro-
cess and analyze graph data while maintaining the privacy of the
information embedded in the graph [19]. These methods are cru-
cial in structured OSNs where the explicit relationships between
users can be exploited to infer personal information. PAGC involves
the application of computational techniques that are designed to
function under privacy constraints. This may include modifying
the graph’s topology or employing algorithms that ensure privacy
through differential privacy, secure multi-party computation, or
homomorphic encryption. The goal is to perform necessary compu-
tations like community detection, influence measurement, or path
analysis without compromising the privacy of the individual nodes
(users). In other words PAGC methods aim to reveal interesting
characteristics of graphs rather than perturbing the graph itself.
This can be thought of as extracting various statistics (for instance,
degree computation) from the graph for publishing or preserving
the data. However, it is not a common approach to use PAGC meth-
ods to store social network data in databases or data warehouses
because it completely negates the need for a structural scheme for
online social networks to hold the connection data between users
[19].

As far as PAGC algorithms, we can leverage differential privacy
techniques by adding noise to the outputs of queries performed

Figure 5: Overview of a Degree Computation from a Graph
[19]

on the graph data, such that the presence or absence of a single
node (which is the user) does not significantly alter the output,
thereby preserving the individual’s privacy. Thus, also prevents
the OSN from using inference attacks. For statistics extraction, it
is also possible to break the graph into smaller, less informative
subgraphs that can be processed separately. This limits the amount
of information an attacker can infer from any single computation
[19].

Implementing PAGCmethods involves a careful balance between
privacy and utility, similar to other distortion techniques. Too much
noise or overly aggressive decomposition can easily render the data
useless, while too little may not sufficiently protect privacy. Fur-
thermore, these methods often require more complex computations,
which can be resource-intensive.

2.2.4 Differential Privacy-Based (DP) Method. Differential
Privacy-Based (DP) methods provide a robust framework for pre-
serving privacy in structured OSNs by ensuring that the removal
or addition of a single individual’s data does not significantly af-
fect the outcome of queries made against the database [19]. This
is achieved by injecting a carefully calibrated amount of random
noise into the data or query results, thus guaranteeing privacy
while still allowing for the utility of the data. In a sense, we are
making small alterations to the overall graph while preserving key
statistics regarding the graph structure and the node attributes.
Differential privacy introduces the concept of the Privacy Budget,
which quantifies how much information an individual query re-
veals. Each query is deducted from the previously decided budget,
with more costly queries consuming more. Conversely, we can also
introduce a Privacy Loss Budget, which signifies the maximum
amount of information leakage (in essence, exposure of sensitive
data) that can be introduced to the output dataset (refer to Fig. 6,
the epsilon represents the privacy loss budget and G1 and G2 repre-
sents two graphs that differ by just one node). The method ensures
that the statistical noise added is proportional to the sensitivity of
the queries, thereby masking the presence or absence of any single
user’s data.

In structured OSNs, where data is represented as graphs, DP can
be applied in various ways, both in centralized or decentralized
settings. One common approach is by adding noise to the properties
of the graph such as node degrees or the existence of specific edges.
This helps prevent attackers from accurately inferring relationships
and characteristics of the individuals within the network. This type
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Figure 6: General DP Model for Any Anonymization Algo-
rithm Using Privacy Loss Budget [19][21]

Figure 7: Overview of Two Most Common DP Settings [19]

of distortion can also prevent data on OSN against attribute match-
ing attacks. DP techniques can also include randomized response
strategies in the querying process and the Laplace or exponential
mechanism to add noise to the data outputs. For instance, when
calculating the degree of connectivity of a node, noise is added to
the degree count before it is published or used in further analysis.
Regarding these, the primary benefit of DP is its strong theoretical
guarantees of privacy, which hold under a broad set of conditions
and adversarial models [19]. However, a significant challenge is bal-
ancing privacy with data utility, as excessive noise can diminish the
usefulness of the data. Additionally, implementing DP in a graph
model requires careful consideration of graph-specific character-
istics, such as clustering coefficients and community structures,
which might be distorted by the added noise. However, with the
introduction of a budgeting mechanism, it is possible to optimize
the utility loss while mitigating the risk of profile-matching attacks.

2.2.5 Hybrid Method. Hybrid methods in privacy-preserving
graph anonymization apply a combination of techniques to en-
hance the effectiveness of privacy protection in structured online
social networks. These methods leverage the strengths of multiple
individual techniques, compensating for the limitations of each
through the integration of another distortion technique, providing
a more robust defense against privacy attacks. In other words, these
methods try to leverage the synergy between different distortion
techniques to increase data privacy with minimal utility loss.

As mentioned, hybrid methods typically integrate two or more
privacy-preserving strategies, such as graph modification, differen-
tial privacy, and clustering. For instance, a common hybrid approach
might involve the application of differential privacy to the results
of a graph clustering method. This combination ensures that the
anonymized graph not only masks the identities through clustering
but also protects against inferential attacks by adding noise to the
aggregated data. The main advantage of using hybrid methods is
their ability to provide higher levels of privacy without significantly
compromising the utility of the data. Combining methods makes it

more challenging for adversaries to exploit the weaknesses inherent
in a single technique. For example, while differential privacy adds
noise that can reduce data utility, clustering can preserve important
structural properties, allowing for meaningful analysis without
revealing sensitive information. This property of hybrid methods
also makes it possible for a distortion scheme to be tailored to the
needs of a researcher (for publishing reasons) or an environment
to protect sensitive data from a very specific attack.

On the other hand, implementing hybrid methods comes with its
set of challenges, particularly in balancing the trade-offs between
privacy and utility. It requires fine-tuning of parameters to ensure
that the added noise does not overwhelm the valuable information
or characteristics in the data [19]. Moreover, the complexity of hy-
brid methods can increase the computational overhead and require
more sophisticated algorithms to effectively manage the interac-
tions between different techniques. Thus, it is accurate to say that
applying multiple methods in combination requires more know-
how regarding the synergy of each distortion technique against
each other.

2.3 Face Recognition/Computer Vision-Based
Attacks

Face recognition or computer vision-based attacks in online social
networks exploit the vulnerabilities inherent in facial recognition
systems or leverage the affluence of image data to deanonymize
users. These attacks utilize sophisticated techniques to match facial
data across various platforms or datasets, aiming to uncover the
identities of anonymized users or to create fraudulent or basically
wrong and harmful identities. Such attacks involve collecting face
images from different social platforms where users might not even
be aware of being targeted. The attackers then use advanced com-
puter vision techniques and algorithms to enhance, analyze, and
compare these images against other datasets. This can include us-
ing machine learning models to improve the accuracy of matching
faces under varying conditions, such as different lighting, angles,
or facial expressions. The ultimate goal of these attacks is to breach
data privacy by linking a person’s separate online personas or so-
cial network accounts, revealing their activities across different
platforms, or even impersonating them in criminal activities. As
these techniques continue to evolve, they propose significant chal-
lenges to maintaining user privacy and security on digital platforms.
Additionally, because the domain of machine learning and com-
puter vision is a newly emerging and fast-developing area, further
empirical performance analysis regarding these attacks and the
distortion techniques against these attacks are still a requisite in
the data privacy domain. We will strictly focus on face recogni-
tion or computer vision-based profile linkage attacks in the setting
of unstructured online social networks. This essay will focus on
the security and data privacy implications of various computer-
vision/face recognition-based attacking techniques. For the distor-
tion techniques against graph-based attacks, we chose to focus on
the following: [22]

• K-Anonymity
• Image Perturbation

Details regarding these topics will be discussed in further sub-
sections. The main criterion for selecting these techniques is the
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wide availability of resources regarding the technical details and
performances of these techniques. A similar comment can be made,
as attribute matching attacks and graph-based attacks, for our selec-
tion process, in which we reduced an initial large pool of possible
distortion techniques for computer vision algorithms and attacks
based on them.

2.3.1 K-Anonymity. The concept of anonymity was first intro-
duced by Sweeney (2002) to address the issue of protecting individ-
uals’ identities in a dataset. The principle behind K-Anonymity is
to ensure that each data record is indistinguishable from at least
k-1 others with respect to certain "quasi-identifier" attributes. This
technique is important in scenarios where data must be shared or
published without revealing sensitive individual information [23].
For example, in a medical dataset, attributes such as age, ZIP code,
and gender could be considered quasi-identifiers. By ensuring that
each combination of these attributes appears at least k times in the
dataset, anonymity can effectively prevent the re-identification of
individuals. We can also use k-anonymity for these examples, but
what we are really examining is k-anonymity for images. We do
this using a k-1 image decoy.

A study by Aggarwal and Yu (2008) has various models that
improve the k-anonymity approach, making it applicable to a wider
range of data types and more resilient against various types of
data mining attacks. The model’s effectiveness is dependent on the
selection of k and the specific attributes considered as identifiers
[24]. However, a notable limitation of k-anonymity is its vulnerabil-
ity to homogeneity, and background knowledge attacks, where an
attacker might have sensitive information from the k-anonymized
data if subsets within the data are not diverse enough or external
information is available.

For comparing performances in the following sections of this
researchwe selected to focus on the following specific K-Anonymity
technique:

• K-Anonymity with image decoy

2.3.2 Image Perturbation. Image Perturbation techniques in-
volve the modification of image data to prevent unauthorized access
to or recognition of the information. It refers to the modification
of image data in a way that maintains the utility of the data for le-
gitimate purposes (like facial recognition for authentication) while
preventing misuse in identity theft or unauthorized tracking. Tech-
niques such as adding noise, blurring, and other forms of digital
alteration fall under this category.

A study by Newton et al. (2005) involves the use of k-same face
de-identification, which perturbs facial images so that they are less
likely to be original individuals but remain useful for demographic
analysis. This method provides a balance between privacy and
utility by ensuring that face images in a dataset cannot be easily
linked back to individuals.[25]

A study by Gross et al. (2006) presents a system for automatic
face anonymization within videos. Their system applies real-time
perturbation techniques to face images, significantly reducing the
risk of personal identification while maintaining enough detail for
audience analysis. [26]

A study by Moosaavi et al. (2017) introduced the notion of uni-
versal adversarial perturbations, which are crafted perturbations

that can mislead a wide range of computer vision models. This
discovery not only emphasizes the vulnerabilities of deep learning
models in image recognition tasks but also highlights a method for
protecting image data from vulnerabilities. [27]

For comparing performances in the following sections of this
research we selected to focus on the following specific image per-
turbation technique:

• Gaussian blurring [28]
Explanation: Gaussian blurring is an image processing
technique that uses a Gaussian function to convolute
an image. The Gaussian function is applied to calculate
the transformation magnitude applied to each pixel in
the image. The function takes into account the horizon-
tal (x) and vertical (y) distances from the center (0,0),
within a circular recognition domain. The values com-
ing from these coordinates are then used to construct
the convolution matrix that is applied to the original
facial image. After the convolution process, each pixel
is assigned a new value, which is the weighted average
of its neighboring pixels. The original pixel, having the
closest coordinates to the center and thus the highest
Gaussian value, is assigned the highest weight. The sur-
rounding pixels contribute to the averaged pixel value
based on their distance from the center. This process
results in a low-pass filter output, producing a blurred
image with minimized clear edges of the facial features.
The blurred edges play a pivotal role in distorting facial
recognition algorithms. In most Online Social Networks
(OSNs) such as Instagram, face detection models like
the Haar Cascade are employed. This algorithm classi-
fies face-like objects based on the intensity and edges
of the pixels. Gaussian blurring serves as an effective
distortion technique in this initial step, as no apparent
edges are detectable to a model that is not specifically
trained with blurred images. This aids in protecting the
user from being identified. Following detection, facial
analysis is conducted where the facial landmarks are
extracted and analyzed using methods like the Con-
strained Local Model (CLM). This method captures the
variation in pixels within patches of the picture and asso-
ciates them with aligned facial features. These methods
yield a unique and distinct faceprint of the user, which is
then compared against a database of known faces. The
distorted faceprint significantly reduces the chances of
matching to these known faceprints, thereby serving to
de-identify users’ faces. The efficacy and limitations of
this technique will be discussed in further sections.

• Differentially Private Face Pixelation [29]
Explanation: The proposed algorithm commences with
a process known as pixelization applied to the input im-
age. This technique involves the substitution of each
individual pixel in an image with a larger block of pix-
els, all of which share the same value. Typically, this
value corresponds to the average color of the original
pixels. The consequence of this process is a reduction
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in the image’s resolution, thereby making it more chal-
lenging to discern fine details for face detection and
facial analysis models explained above. However, pix-
elization is a deterministic process, always producing
identical results given the same input. This predictabil-
ity, however, can potentially be exploited by neural net-
works to re-identify faces in pixelized images, overlook-
ing k-same anonymity principle in matching attacks.
Therefore, to introduce an element of randomness and
enhance protection against re-identification, the algo-
rithm employs Laplace perturbation on the pixelized
image. The Laplace distribution, a probability distribu-
tion commonly used in differential privacy, is used to
introduce noise into the data. This ensures that the out-
put, in this case, the pixelized image, does not give away
excessive information about any single user. The noise
is tried to be included in a way that balances between
privacy and utility which will be evaluated in further
sections. The combination of pixelization and Laplace
perturbation introduces a degree of randomness that
serves to protect against re-identification.

• Noise Addition [30]
Explanation: Noise addition is a widely used technique
of processing images that obscure the face and makes
it harder for FR models to extract features from facial
analysis. However, noise addition can come with utility
costs for human perception. Therefore, a newly pro-
posed method, known as Differential Privacy of Land-
mark Positioning (DPLP), adds noise to specific, sensi-
tive areas of face images to protect privacy. The noise
is added in such a way that it is difficult for face recog-
nition algorithms to correctly identify the face, but the
changes are subtle enough to be almost imperceptible
to humans. The DPLP method works by first using the
Active Shape Model (ASM) algorithm to position the
area of each face landmark. If a landmark overlaps a
subgraph of the original image, then the subgraph is
considered a sensitive area. This sensitive area is then
treated as the seed for regional growth, following the
Fusion Similarity Measurement Mechanism (FSMM).
The privacy budget, which is a measure of the amount
of privacy protection applied, is only allocated to the
seed. The privacy budget is a measure of the amount
of privacy protection that is applied to the data. The
allocation of the privacy budget to the seed is where the
noise addition comes into play. The noise is added to the
seed area in a manner that provides privacy protection
while preserving the utility of the data.The noise added
to the image is designed to exploit the weaknesses of
face recognition algorithms, and when it comes to black
box attacks, where the model is not well known, imple-
menting this method becomes more challenging which
will be discussed in further sections.

• Face Feature Space Perturbation [31]
Explanation: The Feature Space Adversarial Pertur-
bation (FSAP) framework is a novel approach to face

image de-identification. This method is conducted by in-
troducing adversarial perturbations in the feature space
of the image, which are designed to mislead deep neural
networks used for automated face recognition. This is
a significant departure from traditional methods of im-
age de-identification, which typically involve pixel-level
transformations such as blurring or masking. The FSAP
framework includes a specially designed algorithm for
generating these adversarial perturbations. The algo-
rithm works by alternating the perturbation based on
two loss functions: the ID loss and the attribute loss.
The ID loss is related to the identity information of
the individual in the image. The algorithm directs the
adversarial noise towards the identity-related features
of the image, effectively hiding this information from
DNNs. The attribute loss, on the other hand, is related
to other attributes of the individual that are not directly
linked to their identity, such as their age or emotion. By
minimizing this loss, the algorithm ensures that these
attributes remain similar even after the introduction of
the adversarial noise.

• Privacy-Protective-GAN for FaceDe-Identification [32]
Explanation: Privacy-Protective GANs (PP-GANs) rep-
resent an innovative approach to face de-identification,
addressing privacy concerns in the context of face recog-
nition technologies. The central challenge lies in strik-
ing a balance between safeguarding privacy and main-
taining visual quality. PP-GANs build upon the well-
known Generative Adversarial Network (GAN) archi-
tecture. The generator creates de-identified face images
by learning from random noise, while the discriminator
distinguishes between real (original) and generated (de-
identified) data. During training, the generator learns to
create realistic face images by minimizing the difference
between its generated samples and real face images. The
verificator module ensures that the generated face still
resembles the original person, incorporating domain
knowledge (e.g., facial landmarks, identity-specific fea-
tures). The regulator module allows users to customize
the level of de-identification, balancing privacy preser-
vation and visual realism. PP-GANs directly impact user
privacy, achieving better privacy protection than tradi-
tional methods while preserving visual resemblance.

Table 1: Key Concerns of Each Distortion Technique for Com-
puter Vision-Based Attacks

Topic Key Concern
K-Anonymity Privacy protection through

indistinguishability
Image Perturbation Enhancing image data security and

privacy
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3 PERFORMANCE COMPARISON OF
DISTORTION TECHNIQUES

3.1 Comparison of Distortion Techniques for
Attribute Matching Attacks

For Attribute Matching Attack Distortion Techniques, their effec-
tiveness in preserving data utility while protecting privacy will be
evaluated. Additionally, even though both recall and precision is
going to be mentioned, for comparison reasons and system rec-
ommendation we will base the F1-Score. This is because of the
fact that the experiments done using these distortion techniques
are done on a very diverse set of online social networks. Thus, it
wouldn’t be an accurate choice to base our recommendations just
by considering type-1 or type-2 error. We believe that harmonic
recall and precision is more valuable. Here are how metrics will be
used to assess for each distortion technique:

3.1.1 Data Perturbation.
F1-Score: Evaluate the harmonic mean of precision and recall

after applying data perturbation. This metric considers both false
positives and false negatives, making it suitable for assessing the
overall performance of the perturbation technique. This metric is
evaluated for two different data perturbation approaches named
NOS2R and NOS2R over 10 different data sets. [33] Robustness:
Measure the resilience of data perturbation against adversarial at-
tacks aiming to reverse the perturbation and re-identify individuals.
[34]

Sensitivity Analysis: This aspect evaluates how changes in the
parameters of perturbation methods influence the performance of
machine learning models. For instance, in the image domain, per-
turbation techniques like Noise, Brightness, and Contrast exhibit
discernible patterns in performance variation as their parameters
are adjusted. Typically, higher levels of perturbation result in de-
creased model performance across all perturbation types and tested
models. This trend highlights the sensitivity of models to pertur-
bation strength, indicating a diminished capability to accurately
classify images as perturbation intensity increases. Similarly, in
the audio domain, models show varying responses to changes in
perturbation strength, with different perturbations such as White
Noise, Compression, and Pitch demonstrating distinct effects on
model performance.

Noise Tolerance: Noise tolerance refers to the ability of ma-
chine learning models to maintain performance in the presence of
added noise or perturbations. In the audio domain, some pertur-
bators, such as Clipping and Volume, showcase a linear or normal
distribution in their impact on model performance. This suggests a
certain level of tolerance to alterations in audio quality or volume.
However, other perturbators, like Compression and White Noise,
significantly impact model performance, especially at higher per-
turbation strengths. This indicates lower noise tolerance in these
cases, as the models struggle to maintain accuracy when subjected
to intense perturbations.

Overall Robustness: Robustness, in the context of data per-
turbation, encompasses the ability of machine learning models
to sustain performance across diverse perturbation conditions. A
robust model exhibits stable performance despite variations in per-
turbation strength and type. This is evaluated by considering both

sensitivity analysis, which assesses the impact of perturbation pa-
rameters on model performance, and noise tolerance, which gauges
the model’s ability to maintain accuracy in the presence of added
noise or perturbations. Ultimately, a robust model demonstrates
consistent and reliable performance across a range of perturbation
scenarios, making it suitable for real-world applications where data
integrity may be compromised.

Robustness Categorization: Medium
Explanation: Data perturbation techniques, such as NOS2R

and NOS2R, exhibit medium robustness. This conclusion is based
on their ability to maintain a balance between preserving data
utility and privacy (as indicated by the F1-score) and their re-
silience against attempts to reverse-engineer the perturbed data
to re-identify individuals (as indicated by the robustness metric).
While these techniques effectively perturb the data to protect pri-
vacy and maintain utility, they may still be vulnerable to sophis-
ticated attacks targeting the perturbed data, hence the medium
categorization.

3.1.2 Noise Addition.
F1-Score: Compute the F1-score to assess the balance between

precision and recall after adding noise to the data. [35] The F1-score
of noise addition represents the average performance across two
distinct datasets.

Robustness: Evaluate the ability of noise addition to withstand
attempts to reverse-engineer the original data from the noisy ver-
sion. Noise addition robustness is evaluated in the context of train-
ing neural networks with standard Stochastic Gradient Descent
(SGD) and Differentially Private SGD (DP-SGD). The robustness is
measured against adversarial examples generated using techniques
like the Fast Gradient Sign Method (FGSM) and Projected Gradient
Descent (PGD), as well as common corruptions like brightness, fog,
and noise.

Sensitivity Analysis: FGSM Robustness Measurement: Sensi-
tivity analysis is conducted by evaluating the model’s accuracy as
the strength of the adversarial perturbation (𝜖) increases. Both SGD
and DP-SGD models show decreasing accuracy as the perturbation
strength increases, indicating sensitivity to adversarial perturba-
tions. However, the accuracy drop is more pronounced for models
trained with DP-SGD, suggesting that the addition of noise during
training may amplify sensitivity to adversarial examples.

PGD Robustness Measurement: Sensitivity analysis is also
performed by comparing the accuracy of models under PGD at-
tacks with varying strengths (𝜖) and number of steps. The results
show that DP-SGD-trained models exhibit larger accuracy drops
compared to SGD models for certain combinations of 𝜖 and steps,
indicating increased sensitivity to adversarial attacks.

Noise Tolerance: Effect of Noise on Robustness: The study
explores the effect of noise (𝜎) and clipping bounds (C) on the
robustness of models against FGSM attacks. It is observed that
increasing the noise level and clipping bounds decreases the robust-
ness of DP-SGD-trained models, as indicated by larger accuracy
drops under adversarial attacks. This suggests that while noise ad-
dition may enhance privacy, it can also compromise the model’s
ability to resist adversarial attacks.
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Overall Robustness of Noise Addition: FGSM and PGD Re-
sults: The experiments demonstrate that models trained with DP-
SGD exhibit decreased robustness compared to those trained with
standard SGD, as evidenced by larger accuracy drops under both
FGSM and PGD attacks. Additionally, DP-SGD trained models show
decreased robustness to common corruptions compared to SGD
models, indicating that the noise addition during training may not
generalize well to handling various forms of data corruption. Over-
all, the noise addition robustness measurements suggest that while
DP-SGD enhances privacy, it may come at the cost of decreased
robustness to adversarial attacks and common corruptions. Sensi-
tivity analysis reveals that the addition of noise during training may
amplify the model’s sensitivity to adversarial perturbations, high-
lighting the trade-off between privacy and robustness in differential
privacy techniques.

Robustness Categorization: Low
Explanation: Noise addition techniques demonstrate low ro-

bustness due to their limited ability towithstand attempts to reverse-
engineer the original data from the noisy version (as indicated by
the robustness metric). Despite potentially preserving privacy to
some extent, noise addition may not sufficiently obscure sensitive
information from adversarial attacks or attempts to recover the orig-
inal data. This vulnerability to attacks lowers the overall robustness
of noise addition techniques.

3.1.3 Anonymization.
F1-Score: Calculate the F1-score to evaluate the overall effective-

ness of anonymization in preserving privacy without sacrificing too
much utility. The F1 score of the distortion technique anonymiza-
tionwas determined in this study by training Random Forest models
on both the original Train dataset and the synthetic dataset gen-
erated by the SINTEZA engine. The original dataset consisted of
clinical data from 5110 patients, with variables such as gender, age,
hypertension, heart disease, marital status, work type, residence
type, average glucose level, BMI, smoking status, and stroke event.
After randomly splitting the original dataset into Train and Test
sets, the missing values in the BMI records were imputed using
the KNNImputer class. Both datasets underwent oversampling of
the minority class of the target variable (Stroke) using the SMOTE
algorithm to improve model performance. Subsequently, Random
Forest models were trained on both datasets without fine tuning or
cross-validation. The F1 score, which considers both precision and
recall, was then computed for each model using the Test dataset.
The F1 score for the model trained with the original data was found
to be 0.1889, while the F1 score for the model trained with the
synthetic data was 0.1550. This comparison provides insight into
the performance of the distortion technique of anonymization in
preserving the underlying patterns and statistical information of
the original dataset while ensuring patient privacy. [36]

Robustness: The focus of the paper on anonymization primar-
ily centered on evaluating the robustness of the k-anonymity model,
specifically through sensitivity analysis of theARX k-anonymization
algorithm. This approach enabled a comprehensive assessment of
the model’s effectiveness in reducing re-identification risk while
maintaining data utility across various values of k.

Sensitivity Analysis: The importance of sensitivity analysis
in data anonymization is highlighted in various studies, empha-
sizing the need for tailored approaches to balance privacy preser-
vation with data utility. Different attributes exhibit varying sen-
sitivity requirements, necessitating careful consideration during
the anonymization process. For example, controlling the frequency
of sensitive attributes ensures diversity within equivalence classes
in anonymized datasets, contributing to enhanced privacy pro-
tection. The sensitivity of data, quantified by functions like S(f),
reflects the inherent risk associated with data disclosure, with cer-
tain functions exhibiting higher sensitivity than others. Moreover,
the contextual nature of data sensitivity suggests that personal
information becomes sensitive based on its context, influencing
the choice of data release options. The findings from the study
demonstrate that sensitivity-based anonymization, combined with
techniques like k-anonymization and l-diversity models, effectively
mitigates re-identification risks while maintaining data quality.
Comparisons of classifier performance further illustrate the trade-
offs between anonymization and utility, with sensitivity-based ap-
proaches yield varying accuracies across different anonymization
scenarios. [37] Ultimately, the analysis underscores the complexity
of data anonymization in evolving information landscapes, high-
lighting the ongoing need for nuanced approaches to address pri-
vacy concerns without compromising data usability.

Noise Tolerance: The noise tolerance of anonymization tech-
niques is crucial for preserving data privacy while maintaining data
utility. Analyzing noise tolerance involves assessing how well an
anonymization method can handle variations and perturbations in
the data without sacrificing its effectiveness in protecting privacy.
Anonymization techniques with high noise tolerance can effectively
obscure sensitive information while preserving the overall struc-
ture and characteristics of the data. This means that even when
subjected to various forms of noise, such as random perturbations
or intentional attacks, the anonymized data remains sufficiently
protected against re-identification while still being useful for analy-
sis and other purposes. Assessing noise tolerance typically involves
evaluating the impact of noise on the anonymized data’s privacy
protection and utility. Anonymization methods that can withstand
moderate levels of noise without significantly compromising pri-
vacy or data quality are considered to have high noise tolerance.
These methods often employ techniques such as generalization, sup-
pression, and randomization to introduce controlled noise into the
data while preserving its integrity. Research in anonymization often
focuses on developing techniques that strike a balance between
noise tolerance, privacy protection, and data utility. By enhancing
noise tolerance, anonymization methods can better adapt to diverse
datasets and real-world scenarios, ensuring effective data privacy
in various applications, including network anonymization. [38]

Overall Robustness: The overall robustness of anonymization
techniques seems to be medium to high. This conclusion comes
from evaluations using metrics like the F1-score and sensitivity
analysis. The k-anonymity model shows effectiveness in reducing
re-identification risks while maintaining data utility, contributing
to this robustness. Noise tolerance, another key aspect, ensures that
anonymized data remains resilient to variations and perturbations
without sacrificing privacy or utility. Anonymization methods with
high noise tolerance can hide sensitive information while keeping
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the data’s structure intact, enhancing overall robustness. However,
achieving robust anonymization requires careful consideration of
factors like sensitivity requirements and trade-offs between pri-
vacy and utility. Ongoing research is needed to further enhance
robustness and address evolving privacy concerns.

Robustness Categorization: High
Explanation: Anonymization techniques, such as k-anonymity

models, exhibit high robustness. This conclusion is drawn from
their effectiveness in reducing re-identification risks while main-
taining data utility (as indicated by the F1-score) and their ability
to withstand attempts to reverse-engineer the anonymized data (as
indicated by the robustness metric). These techniques effectively
balance privacy preservation with data utility and demonstrate
resilience against re-identification attacks, thus achieving high ro-
bustness.

3.1.4 Tokenization.
F1-Score: Compute the F1-score to assess the effectiveness of

tokenization in preserving privacy and data utility. [39] The per-
formance of five tokenization methods (W1, W1p, C3, C4, C5) was
evaluated based on nine criteria within each method. To derive
the overall effectiveness of these methods, the F1-score was cal-
culated for each criterion, and the results were averaged across
all criteria. The resulting ultimate average F1-score, obtained by
summing and averaging the scores across all methods and criteria,
provides a comprehensive assessment of the tokenization methods’
performance.

Robustness: Evaluate the resilience of tokenized data against
attacks aiming to reverse-engineer the original data from the tokens.
[40]

Sensitivity Analysis: The scale-space tokenization method of-
fers a significant advancement in sensitivity analysis by effectively
balancing the robustness and utility of Vision Transformer (ViT)
models. Through the incorporation of scale-space patch embed-
ding and positional encoding, the method enhances the model’s
resistance to adversarial and out-of-distribution perturbations. Ex-
perimental validation on benchmark datasets such as CIFAR10/100
and ImageNet-1k reaffirms the method’s efficacy in preserving
model robustness while ensuring practical utility.

Noise Tolerance: This approach substantially enhances noise
tolerance by leveraging shape bias and scale-space representation.
Larger patch-sized ViT models with increased shape bias demon-
strate superior resilience to various perturbations, including pixela-
tion, fog, rain, and snow. By employing scale-space representation,
the method effectively suppresses fine-scale details while retaining
essential shape information, thereby bolstering noise tolerance in
Tokenization models.

Overall Robustness: The introduced method significantly bol-
sters the overall robustness of ViT models against adversarial per-
turbations and common corruptions. Future research avenues may
explore further enhancements in noise tolerance and sensitivity
analysis within the Tokenization framework. Extending robust-
ness improvements to encompass other perturbation types, such
as natural adversarial examples and naturally occurring distribu-
tions, holds promise for enhancing noise tolerance in Tokenization
models. The method’s emphasis on shape bias and scale-space rep-
resentation underscores its efficacy in bolstering noise tolerance

and sensitivity analysis, thereby enhancing the overall robustness
of Tokenization models.

Robustness Categorization: Medium
Explanation: Tokenization methods demonstrate medium ro-

bustness due to their effectiveness in preserving privacy and data
utility (as indicated by the F1-score) and their ability to resist at-
tempts to reverse-engineer the tokens back to the original data (as
indicated by the robustness metric). While tokenization enhances
privacy protection and maintains data utility, it may still be suscep-
tible to certain attacks targeting the tokenized data, leading to a
medium categorization of robustness.

3.1.5 Hashing.
F1-Score: Calculate the F1-score to evaluate the balance be-

tween precision and recall after applying hashing to the data. The
F1 scores for the hashing algorithms A-hash, D-hash, W-hash, and
P-hash were averaged to provide an overall assessment of their per-
formance. This involved summing the F1 scores obtained for each
algorithm across different distance thresholds and then averaging
these values. The resulting average F1 scores were used to compare
the overall effectiveness of the hashing methods. [14]

Robustness: Assess the cryptographic strength of hashing algo-
rithms used and their resistance against hash reversal attacks.

Sensitivity Analysis: The introduced hashing schemes demon-
strate significant improvements in sensitivity analysis, particularly
in robustness and security features. Analytical expressions derived
using differential entropy as a metric facilitate the assessment of
security in hashing, ensuring a thorough examination of feature ex-
traction stages. The schemes exhibit resilience to moderate filtering,
compression operations, and common geometric manipulations,
up to 10 degrees of rotation and 20 percent cropping, indicating a
comprehensive sensitivity analysis approach.

Noise Tolerance: The hashing schemes showcase commend-
able noise tolerance, as evidenced by their ability to withstand
moderate filtering and geometric operations without compromis-
ing robustness or security. The methods effectively identify and
mitigate malicious manipulations, such as cut-and-paste editing,
while preserving the integrity and discriminative capabilities of the
hashed images. Differential entropy analysis confirms the schemes’
noise tolerance, providing insights into their ability to maintain
stability and security in the presence of varying levels of noise and
perturbations.

Overall Robustness: The developed image hashing algorithms
offer a balanced blend of robustness and security, catering to di-
verse applications such as authentication, watermarking, and image
databases. Through comprehensive sensitivity analysis and differen-
tial entropy metrics, the schemes demonstrate advanced robustness
against estimation and forgery attacks, ensuring a reliable represen-
tation of data for various practical scenarios. The incorporation of
shape bias and scale-space representation enhances overall robust-
ness, underscoring the schemes’ effectiveness in preserving image
integrity and security across different noise levels and manipulation
types.

Robustness Categorization: Medium
Explanation: Hashing algorithms exhibit medium robustness,

considering their ability to balance robustness and security features
(as indicated by the robustness metric) and their effectiveness in
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preserving data integrity against attacks. While hashing provides a
reliable representation of data and offers resistance against reverse-
engineering attacks, it may still face challenges in maintaining
security under certain adversarial scenarios, leading to a medium
categorization of robustness.

3.1.6 Suppression.
F1-Score: Compute the F1-score to assess the overall effective-

ness of attribute suppression in preserving privacy and data utility.
The F1-score values for different methods were averaged to assess
their performance in jamming suppression. Despite the focus on
jamming recognition, an average F1-score specifically for suppres-
sion was derived by averaging the F1-scores of different methods
across all instances of jamming. This involved summing up the
F1-scores for suppression across all method-jamming combina-
tions and then dividing by the total number of combinations. The
resulting average F1-score provides an overall assessment of the
effectiveness of the methods in suppressing jamming interference.
[41]

Sensitivity Analysis: The technique effectively mitigates the
risk of privacy breaches even when the suppressed data undergoes
minor changes. By suppressing values that could potentially lead
to the identification of individuals, the technique remains robust in
sensitivity analysis. It can withstand variations in the suppressed
data while still ensuring privacy, thereby reducing the likelihood
of privacy risks.

Noise Tolerance: The suppression distortion technique en-
hances noise tolerance by effectively handling variations in the
suppressed data caused by noise or random fluctuations. Despite
inherent noise in the data, the technique maintains privacy pro-
tection intact. By suppressing sensitive information and distorting
released data, it ensures that privacy is preserved even in the pres-
ence of random variations, thus enhancing its robustness in noise
tolerance.

Overall Robustness: The technique demonstrates overall ro-
bustness by effectively thwarting privacy breaches across different
types of queries and inference attacks. By systematically suppress-
ing information that could reveal personally identifiable informa-
tion (PII), it strengthens privacy protection in diverse scenarios.
The technique’s ability to withstand various attacks and scenarios
underscores its effectiveness in ensuring privacy preservation in
real-world applications.

Robustness Categorization: High
Explanation: Suppression techniques demonstrate high robust-

ness due to their ability to effectively mitigate privacy breaches (as
indicated by the F1-score) and maintain privacy protection in the
presence of noise or variations in the suppressed data (as indicated
by the noise tolerance metric). These techniques systematically
suppress sensitive information and ensure privacy preservation
across different scenarios, thus achieving high robustness.

3.1.7 Generalization.
F1-Score:Calculate the F1-score to evaluate the balance between

precision and recall after applying generalization techniques.
The average F1 score was calculated based on the F1 scores ob-

tained from testing various methods on the model generalization
ability testing dataset. These methods include word2vec-BiLSTM-
CRF, word2vec-BiGRU-CRF, word2vec-CRF, FastText-BiLSTM-CRF,

FastText-BiGRU-CRF, FastText-CRF, BERT-BiLSTM-CRF, BERT-
BiGRU-CRF, and BERT-CRF. The average F1 score provides an
overall assessment of the performance of these methods in terms
of their model generalization ability. [42]

Sensitivity Analysis: The generalization distortion technique
exhibits robustness in sensitivity analysis by effectively handling
variations in the data caused by the distortion process. Despite the
transformation applied to the data for generalization purposes, the
technique ensures that the model’s performance remains stable
across different scenarios. It can withstand changes in the data
distribution induced by the generalization process, thereby main-
taining consistent performance levels. [43]

Noise Tolerance: The technique enhances noise tolerance by
mitigating the impact of noise introduced during the generalization
process. Despite potential noise in the data resulting from the dis-
tortion technique, the technique maintains robustness by ensuring
that the model’s performance is not significantly affected. It can
effectively filter out irrelevant information and focus on capturing
essential patterns in the generalized data, thereby enhancing noise
tolerance and preserving model robustness.[43]

Overall Robustness: The generalization distortion technique
demonstrates overall robustness by effectively balancing the trade-
off between model performance and generalization capability. It
ensures that the model remains robust even after the data is gener-
alized, thereby improving its ability to generalize to unseen data
while maintaining stable performance in real-world scenarios. The
technique’s ability to preserve model robustness in the face of data
generalization underscores its effectiveness in enhancing model
reliability and performance.[43]

Robustness Categorization: High
Explanation: Generalization distortion techniques exhibit high

robustness, considering their ability to balance model performance
and generalization capability (as indicated by the F1-score) and
their resilience against variations induced by the distortion process
(as indicated by the sensitivity analysis and noise tolerance metrics).
These techniques maintain stable performance levels and preserve
model robustness even after data generalization, thereby enhancing
model reliability and performance in real-world scenarios.

Overall, the categorization of distortion technique robustness
as high, medium, or low is based on a holistic assessment of their
performance across various metrics, including F1-score, robustness
against attacks, sensitivity analysis, noise tolerance, and preser-
vation of true positive matches. High robustness indicates strong
resilience against attacks and variations, medium robustness sug-
gests a balanced performance with some vulnerabilities, and low
robustness implies susceptibility to attacks or challenges in main-
taining data integrity and privacy. For a numerical comparison of
the mentioned distortion techniques, refer to Table 2. We choose to
use F1-Score over recall and precision. Because of the heterogeneity
of environments where the performances are tested, it wouldn’t
be very accurate to depend only on type-1 or type-2 errors. Thus,
we choose to evaluate distortion techniques based on the harmonic
average of precision and recall (i.e., F1-Score). Additionally in this
comparison, low F1-Score means higher data privacy protection. Be-
cause it means that after the application of the specified distortion
technique, the attack became less effective, thus scoring a lower
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Table 2: Distortion Technique Performance Comparison for Attribute Matching Attacks

. Data Perturbation Noise Addition Anonymization Tokenization Hashing Suppression Generalization
F1 Score 0.79 0.47 0.17 0.86 0.51 0.76 0.52

Robustness medium low high medium medium high high

F1-Score on the dataset. In this sense, Anonymization (bold in Table
2) technique is the best performing in terms of sanitizing the data.

3.2 Comparison of Distortion Techniques for
Graph-Based Attacks

3.2.1 Modification Method.
F1-Score: The average F1 score for the distortion technique

modification on graphs can be calculated by considering the F1
scores reported for each attack type in both datasets. For the InSDN
dataset, the F1 scores for each attack type were reported for both
Random Forest and k-NN classifiers. Similarly, for the SDN-IoT
dataset, F1 scores were reported for each attack type in both clas-
sifiers. To obtain the average F1 score, you would sum up all the
F1 scores reported for each attack type across both datasets and
both classifiers, and then divide by the total number of F1 scores
reported. [44]

For example, let’s say we have F1 scores for six attack types in
the InSDN dataset and five attack types in the SDN-IoT dataset, for
both Random Forest and k-NN classifiers. That would give us a total
of 11 F1 scores for each classifier. We sum up all these F1 scores
and then divide by 11 to get the average F1 score for each classifier.
This average F1 score would represent the overall performance of
the distortion technique modification on graphs across different
attack types and datasets. [44]

Robustness: The Modification Method distortion technique,
when applied to the HANG and HANG-quad models, contributes
to their robustness across different aspects, including sensitivity
analysis, noise tolerance, and overall resilience against adversarial
attacks. [45]

Sensitivity Analysis: The robustness of the HANG-quad model
against graph modification adversarial attacks using the Metattack
method indicates its resilience to perturbations in the graph struc-
ture. Sensitivity analysis involves assessing how variations in input
data affect the model’s output. In this context, the model’s ability to
maintain performance despite modifications to the graph structure
suggests that it is relatively insensitive to such changes. [45]

Noise Tolerance:While not explicitly mentioned, noise toler-
ance can be inferred from the model’s ability to withstand graph
modification and poisoning attacks. Noise in the input data can be
viewed as perturbations or distortions that may disrupt the model’s
performance. The fact that the HANG-quad model demonstrates
superior robustness against adversarial attacks suggests that it ex-
hibits a degree of noise tolerance, as it can effectively distinguish
between genuine features and adversarial perturbations.[45]

Overall Robustness: The overall robustness of the HANG and
HANG-quad models is highlighted by their performance in the face
of various adversarial attacks, including graph modification and
poisoning attacks. These models not only maintain their effective-
ness but also outperform existing defense models such as Pro-GNN,

RGCN, and GCN-SVD in terms of resilience. Furthermore, the inte-
gration of additional defense mechanisms like Adversarial Training
(AT) and GNNGUARD further enhances their robustness, demon-
strating their versatility and effectiveness in addressing security
concerns in graph neural networks.[45]

Robustness Categorization: Medium
Explanation:While the Modification Method distortion tech-

nique applied to the HANG and HANG-quad models improves their
robustness to an important extent, there are certain limitations
observed across sensitivity analysis, noise tolerance, and overall
resilience against adversarial attacks.

3.2.2 Clustering Method.
F1-Score: Three proposed models for privacy-preserving graph

embedding experienced accurate evaluation, aiming to examine
their efficacy in maintaining utility while ensuring robust privacy
protection. Through a series of experiments repeated ten times,
average results and standard deviations were calculated to ensure
the reliability of the analysis. The primary metric employed for
evaluation, the Macro-F1 score, provided valuable insights into
the understanding between preserving utility within the domain
of graph embedding. Specifically, APGE’s average Macro-F1 score
of 0.518 on the private attribute(class year) on the Yale dataset
outperformed APDGE by a significant margin of 30 percent, em-
phasizing its potential as a robust solution for privacy-preserving
graph embedding tasks. [46]

Robustness: The robustness of the clustering method is eval-
uated by leveraging the Twitter-Foursquare dataset [47], which
serves as base truth due to the correlation between Twitter and
Foursquare accounts.

Sensitivity Analysis: By exploiting attribute and structure in-
formation comprehensively through an embedding approach, the
method ensured a thorough examination of the clustering’s sen-
sitivity. Additionally, extensive experimentation on real datasets
validates the method’s resilience to perturbations, indicating a com-
prehensive sensitivity analysis approach. Noise Tolerance: The clus-
tering method shows commendable noise tolerance, as evidenced
by its ability to handle perturbations and variations without com-
promising robustness or security. Leveraging the efficient APEBFC
process and soft clustering techniques, it effectively mitigates noise
and maintains the integrity of the clustering results. Extensive
experiments on real datasets further confirm the method’s noise
tolerance and its ability to withstand diverse challenges.

Overall Robustness: The proposed MASTER and MASTER+
frameworks represent a significant advancement in robustly rec-
onciling multiple social networks. Through a unified optimization
approach and innovative clustering techniques, it is ensured a high
level of robustness and accuracy. Extensive experimentation on real
datasets demonstrates the superiority of the frameworks, shows
their effectiveness and reliability across diverse scenarios.
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Robustness Categorization: High
Explanation: Based on the comprehensive evaluation and ex-

perimentation, it is categorized the robustness of the clustering
method as high. The approach shows resilience to perturbations,
noise, and variations, ensuring reliable clustering results across
different social networks and datasets. The combination of inno-
vative techniques and thorough sensitivity analysis contributes to
the high robustness of the clustering method, making it suitable
for various real applications. [48]

3.2.3 PAGC Method (Privacy aware graph computing) .
F1-Score: F1 score was not found because there was no ex-

periment found with wide and uniform dataset that F1 score was
calculated. We identified 3-node triangle as one of the most effec-
tive techniques. Instead of F1 score, Mean relative error is used in
3-node technique. [49]

Among privacy aware graph computing techniques, the mean
relative error can be determined as 0.015 in 3-node technique that
provides 3-node triangle communities that 3 users in the same
community. This can effectively separate communities and make it
published in a privacy awared way.[49]

Robustness: Robustness refers to the ability of the proposed
estimator, ImprG, to consistently provide accurate estimates of
graphlet counts across different scenarios and datasets. The authors
demonstrate the robustness of ImprG by showing that it maintains
low error rates across various graphlet types and sizes, indicating
its reliability and stability in estimating graphlet counts in online
social networks (OSNs).

Sensitivity Analysis: The PAGC method exhibits robustness
in sensitivity analysis by effectively handling variations in the
data caused by the clustering process. Despite the transformation
applied to the data for clustering purposes, the method ensures
that the clustering performance remains stable across different
scenarios. It can withstand changes in the data distribution induced
by the clustering process, thereby maintaining consistent clustering
quality.

Noise Tolerance: The technique enhances noise tolerance by
mitigating the impact of noise introduced during the clustering
process. Despite potential noise in the data resulting from various
attributes, the method maintains robustness by ensuring that the
clustering performance is not significantly affected. It can effectively
filter out irrelevant information and focus on capturing essential
patterns in the attribute graph, thereby enhancing noise tolerance
and preserving clustering robustness.

Overall Robustness: The PAGC method demonstrates overall
robustness by effectively balancing the trade-off between cluster-
ing performance and attribute graph representation. It ensures that
the clustering remains robust even after the attribute graph is con-
structed, thereby improving its ability to cluster similar profiles
while maintaining stable performance in real-world scenarios. The
method’s ability to preserve clustering robustness in the face of
varying attribute graphs underscores its effectiveness in enhancing
clustering reliability and performance.

Robustness Categorization: Medium
Explanation: The PAGC method exhibits medium robustness,

considering its ability to balance clustering performance and at-
tribute graph representation and its resilience against variations

induced by the clustering process. This method maintains stable
clustering performance and preserves clustering robustness even
after constructing the attribute graph, thereby enhancing clustering
reliability and performance in real-world scenarios.

3.2.4 Differential Privacy-Based (DP) Method.
F1-Score: The F1 score of the differential privacy method for

graph-based attacks can be determined by analyzing the provided
experimental results. For each dataset (MNIST, Fashion-MNIST, and
CIFAR10) and each technique (no-defense, only adversarial, only
DP, and DP-Adv), F1 scores are provided for membership inference
attacks, calculated using Precision and Recall values from the tables.
To calculate the average F1 score, first, the average F1 score for
each technique across all datasets is computed, followed by the
average F1 score for each dataset across all techniques. Finally, the
overall average F1 score is calculated considering all datasets and
techniques. The datasets used for experimentation include MNIST,
Fashion-MNIST, and CIFAR10, with a 4-layer convolutional model
employed for each dataset. Hyperparameters for training, such
as epsilon for differential privacy and attack steps for adversarial
training, are specified. Membership inference attack performance
is evaluated in terms of accuracy, precision, recall, and F1-score
for each dataset and technique. The DP-Adv technique, combining
both differential privacy and adversarial training, aims to enhance
privacy protection while maintaining model utility. The analysis
encompasses individual-level data privacy, group-level data privacy,
and comparison of different strategies’ performance in defending
against membership inference attacks. [50]

Sensitivity Analysis: The robustness of the DP method as a
distortion technique in sensitivity analysis indicates its ability to
withstand variations in the input data while maintaining privacy
guarantees. Specifically, in the context of membership inference
attacks, sensitivity analysis evaluates how changes in the training
data affect the likelihood of an attacker inferringmembership status.
The DP method demonstrates robustness in sensitivity analysis by
ensuring that small changes in the input data do not significantly
alter the privacy guarantees provided. This is achieved through the
differential privacy mechanism, which adds noise to the gradients
during training, thereby mitigating the impact of individual data
points on the model’s parameters.[50]

Noise Tolerance: The robustness of the DP method in terms
of noise tolerance refers to its ability to effectively handle noise
added during the training process while preserving privacy and
utility. Noise tolerance is crucial in ensuring that the DP method
remains resilient against adversarial attacks that aim to exploit
vulnerabilities introduced by the noise. In the context of differen-
tial privacy, the DP method exhibits robustness in noise tolerance
by striking a balance between adding sufficient noise to protect
privacy and preserving the utility of the trained model. Despite
the noise introduced during training, the DP method maintains a
level of accuracy and performance that is acceptable for practical
applications, as demonstrated in experimental results.[50]

Overall Robustness: Overall, the DP method as a distortion
technique demonstrates robustness in various aspects, including
sensitivity analysis and noise tolerance, contributing to its effec-
tiveness in preserving privacy in machine learning models. By
incorporating the principles of differential privacy into the training
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process, the DP method provides strong privacy guarantees while
minimizing the impact on model performance. The experimental
results presented in the study support the overall robustness of
the DP method, highlighting its ability to withstand different types
of attacks and variations in the input data. Moreover, the DP-Adv
approach, which combines adversarial training with differential
privacy, further enhances the robustness of the DP method by ad-
dressing potential vulnerabilities associated with each technique
individually. [50]

Robustness Categorization: High
Explanation: Based on an evaluation and experimentation, the

robustness of the DP method is categorized as high. The method
demonstrates resilience in sensitivity analysis, ensuring that small
changes in input data do not significantly affect privacy guarantees.
Its robustness in noise tolerance enables effective handling of noise
while maintaining privacy and utility.

3.2.5 HybridMethod (Combination of Anonymization Tech-
niques).

F1-Score:Calculate the F1-score to evaluate the balance between
precision and recall after applying a combination of anonymization
techniques in the Hybrid method.

The F1 scores for theHybridmethod are calculated by integrating
scores from multiple distortion techniques, including randomiza-
tion and perturbation, applied within a graph-based framework.
These scores are then averaged to determine the method’s overall
effectiveness. In this research hybrid method is calculated with
generalization and anonymization. [51]

Sensitivity Analysis: The robustness of the Hybrid Evolution-
ary Algorithm is evident in sensitivity analysis, where it shows
the capability to withstand variations in input data while ensuring
privacy preservation. Particularly in scenarios like optimizing gen-
eralized feature sets, sensitivity analysis assesses how alterations
in the dataset affect the algorithm’s ability to maintain privacy
guarantees. The Hybrid EA method demonstrates robustness in
sensitivity analysis by efficiently navigating changes in input data
without compromising privacy or utility. This is achieved through
the coordinated operation of Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO), ensuring that small changes do not
disrupt the privacy guarantees provided.

Noise Tolerance: The Hybrid EA method exhibits robustness
in noise tolerance, highlighting its capacity to manage noise in-
troduced during optimization while upholding privacy and utility.
Noise tolerance is critical to safeguarding against attacks aiming to
exploit vulnerabilities introduced by noise. Within the context of
evolutionary algorithms, the Hybrid EA method strikes a balance
between introducing noise for privacy preservation and maintain-
ing the effectiveness of the optimization process. Despite noise
during optimization, the method maintains a satisfactory level of
accuracy and performance, as demonstrated in experimental results.

Overall Robustness: In sum, the Hybrid EA method demon-
strates robustness across various aspects, including sensitivity anal-
ysis and noise tolerance, contributing to its efficacy in privacy-
preserving data mining tasks. By synergizing the capabilities of
GA and PSO, the method provides strong privacy guarantees while
ensuring optimization effectiveness. Experimental results validate
the method’s robustness, indicating its ability to withstand diverse

challenges and variations in input data. The hybrid nature of the al-
gorithm enhances its resilience and adaptability, making it suitable
for practical applications in privacy-preserving data mining.

Robustness Categorization: Medium
Explanation: Based on an evaluation of its sensitivity anal-

ysis and noise tolerance, the Hybrid EA method’s robustness is
categorized as medium. While it demonstrates resilience in manag-
ing variations in input data and noise during optimization, there
might be limitations in handling complex datasets or achieving
optimal solutions in all scenarios. However, the method’s hybrid
approach enhances its adaptability and effectiveness, contributing
to its overall robustness. Further experimentation and evaluation
across diverse datasets could provide insights into its robustness in
real-world applications. [52]

Overall, the categorization of distortion technique robustness
as high, medium, or low is based on a holistic assessment of their
performance across various metrics, including F1-score, robustness
against attacks, sensitivity analysis, noise tolerance, and preser-
vation of true positive matches, which is similar to the previous
attribute-matching attack comparison. High robustness indicates
strong resilience against attacks and variations, medium robustness
suggests a balanced performance with some vulnerabilities, and
low robustness implies susceptibility to attacks or challenges in
maintaining data integrity and privacy. For a numerical comparison
of the mentioned distortion techniques, refer to Table 3. Similar
to previous empirical comparison of distortion techniques for at-
tribute matching attacks (Table 2), we choose to use F1-Score over
recall and precision. Because of the heterogeneity of environments
where the performances are tested, it wouldn’t be very accurate to
depend only on type-1 or type-2 errors. Thus, we choose to evaluate
distortion techniques based on the harmonic average of precision
and recall (i.e., F1-Score). Additionally, in this comparison, a low F1-
Score means higher data privacy protection. Because it means that
after the application of the specified distortion technique, the attack
became less effective. Thus scoring a lower F1-Score on the dataset.
So, Clustering (bold in Table 3) came out to be the best-performing
method in terms of protecting the data against the attack (it also
scored high in robustness).

3.3 Comparison of Distortion Techniques for
Computer Vision-Based Attacks

3.3.1 K-Anonymity with image decoy.
De-IdentificationRate:De-Identification rate for K-Anonymity

with Decoy Images is quite high with almost 0.8 of the faces in the
dataset that used in the experiment were successfully de-identified
as seen in Table 4. One of the important factors for such high success
rate was because protected identity face was pre-determined so the
decoyed images could be fine tuned to their facial features, resulting
in a decoy face dataset much closer to the protected identity. Also,
as k-value increases, a drop in the protection rate was observed as
the targeted data started including the protected identity as well.
[53]

Utility: Utility of their proposed technique was not clearly quan-
tified with human perception surveys in their research. However,
their proposed facial privacy preserving technique promises a very
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Table 3: Distortion Technique Performance Comparison for Graph-Based Attacks

Modification Method Clustering Method PAGC Method Differential Privacy-Based (DP) Method Hybrid Method
F-1 Scores 0.88 0.518 - 0.63 0.635
Robustness Medium High Medium High Medium

MRE - - 0.016 - -

effective deployment possibility for big OSN’s like Facebook or In-
stagram as they have very large datasets with many possibilities for
decoy images. However, the utility in the user’s own independent
privacy preservation is almost non-existent since the technique
depends on existence of a high volume of decoy pictures of the
protected subject.[53]

Transferability:Transferability of the distortion technique de-
pend on whether the protector party would need to know the
mathematics behind the FR model that is used to attack. For the
decoy image k-anonymity to make the model match with the decoy
images, the feature extraction and faceprint creation process should
be known so that the decoy images can be generated accordingly
and with most deceiving versions possible. Therefore, the transfer-
ability of their proposed distortion technique to other untested FR
models is very unlikely.[53]

Limitations:Asmentioned in above sections, although k-anonymity
principle is very effective in privacy preserving technologies, in
the realm of facial privacy, it can harder to both test the efficacy
of the proposed decoy image distortion in greater scale and the
individuals to benefit from in a small scale. Therefore, this distor-
tion technique has serious scalability limitations in both ends of
the spectrum. [53]

Robustness Categorization: Low
Explanation:Robustness can be through of as the equal weighted

combination of each metric. This distortion technique has signifi-
cant setbacks from utility and transferability aspects even though
the experiments were shown that it could protect the subject’s fa-
cial privacy 4 out of 5 times. Therefore, the robustness of overall
must be low.

3.3.2 Gaussian Blurring.
De-Identification Rate: The de-identification rate for Gaussian

blurring technique changes from FR model that attacks the images.
If the model was trained with images that used Gaussian blurring,
the success rate could be lower. However, in the experiment that
used more than three hundred thousand faces, the distortion tech-
nique could protect 0.660 of the faces against Amazon’s FR model.
However, there are some further research where de-blurring of
photos lead to much lower protection rates. [28]

Utility: Utility loss is one of the biggest setbacks of this tech-
nique. Ironically the loss of image quality that distorts FR models
also significantly decreases human perception as well. Therefore,
most users may not opt to have their pictures on OSN’s blurred due
to a potential scraping and FR attack. [28]

Transferability:Gaussian blurring does not depend on the FR
models’ inner specific algorithms or coefficients to effectively pro-
tect the subject from getting identified. The technique could be
applied against both black-box attacks where nothing about the
adverserial party is known. Also, it can very easily be consulted

by individuals independently from other users or OSN’s providers.
The other end of the scalability is also valid since all of the sensitive
images can suddenly become private again by very little effort from
OSN providers. [28]

Limitations: The main two limitations would be loss of infor-
mation of the image leading to low utility and the de-blurring
possibility of the protected images as mentioned above. Although
there ways to mitigate it through changing blurring coefficients or
alternating blurring functions other than Gaussian distortion that
would take precaution against deblurring algorithms or blurred im-
age trained FR models, those would still at some point compromise
the privacy of the subject. [28]

Robustness Categorization: Low
Explanation: Overall robustness is again quite low due to both

the lower efficacy of the de-identification in the face of FR attacks
and utility cost due to the blurring effect on human perception.
Therefore, even though it is a transferable distortion technique one
can use immediately, the robustness must be classified as low.

3.3.3 Differentially Private Face Pixelation.
De-Identification Rate: One of the biggest factors in the de-

identification rate of pixelation could be the grid cell length, which
refers to how small the pixels would be set to be. As one can image,
as the grid length increases, the privacy of the owner of the image
would be elevated as the edges of the facial features would be
getting more and more lost. However, the deterministic nature
of pixelation makes the efficacy of the technique quite low when
used solely with decreasing chances of privacy as the number of
pixelated photos of the subject increase. Therefore, random noise
addition with differential privacy Laplace function is a must in the
greater scale of usages with a jumping de-identification rate of 0.88.
[29]

Utility: Similar to blurring, the information loss can be too great
of an issue if the grid cell length, as well as privacy budget, cannot
be carefully selected. In the survey conducted in the research, only
0.01 percent of the volunteers admitted to being willing to use
pixelation due to too great of an information loss on their OSN
photos.[29]

Transferability:Transferability of the pixelation technique is
quite high since it does not base its methods to one single FR model.
FRmodels would need to reverse this processing before even getting
into detection or identification steps. Therefore, it can be used
without knowing the strategy of the adversarial party.[29]

Limitations: One big limitation of this technique would be the
varying size of one’s photos on OSNs. For instance, an applied
and tested grid cell length and privacy budget for a small photo
could not be the same for a photo that is very large sized and from
very up close to the face. Therefore, calibrating the grid cell size
and privacy budgeting is crucial. Also, similarly, trade-off between
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information loss and privacy gainmight not be feasible for everyday
OSN users.[29]

Robustness Categorization: Low
Explanation: Due to mainly very low utility of pixelation and

the possible sizing issues, the robustness of the distortion technique
must be classified as low. There are not really everyday usages for
privacy preservation, even if used along with differential privacy
noise addition.

3.3.4 Noise Addition.
De-IdentificationRate:Noise addition is a verywide-encompassing

technique where different types of noises can be added to different
parts of the face on the image. There are noise addition algorithms
that yield different success results based on trial and error, but the
best ones that were encountered had a de-identification rate of 0.88.
It seems to be highly effective against different types of FR models,
including Amazon FR models. [30]

Utility: Utility is not very much compensated since the algo-
rithms scale their noise inclusion based on the unedited pixels’
ratios. In the survey, 0.4 of the interviewees admitted that they
would not mind a certain amount of black or white noise added to
their photos. Although it can also change based on the context of
photos shared. For example, the users may not be as willing to have
noise on their profile photos on LinkedIn while they could tolerate
it on their Instagram pictures.[30]

Transferability:Transferability of the noise addition technique
is very high as they can easily be used by many different users
and many different OSN’s which would be exposed to attacks from
different FR models.[30]

Limitations: The biggest danger of the noise addition technique
could be how commonly the specific algorithm for noise addition
is used in the grater scheme. If one uses a very commonly known
algorithm, sophisticated FR models could reverse their processed
images that would then be open to even very simple FR model’s
attacks.[30]

Robustness Categorization: Medium
Explanation:Robustness of the noise addition technique must

be classified into the medium category as there are many very
successful noise addition algorithms against different FR models,
and the utility trade-off is very feasible for even a daily user.

3.3.5 Face Feature Space Perturbation.
De-Identification Rate: Face feature space perturbation is a

good attempt into bringing the distortion and noise addition of
face images from pixel real to feature realm. However, due to very
specific algorithms that aim to distort the specific features of the
face such as eyes, nose or mouth, the distortion technique does
not yield very successful privacy preservation rate across different
FR models with 0.605 de-identification rate. It is reasonable since
the distortions are introduced directly into the face’s features, one
must be more knowledgeable about the techniques and strategies
attacking FR models must be using, which is not very possible most
of the time. [31]

Utility: Utility is also quite low due to very direct distortion that
humans perceive on their own features rather than the pixels of
their images. Loss of aesthetics hinders the utility of the technique
very significantly especially in OSN’s photo sharing. However, it
can improved based on feedback from the users.[31]

Transferability: Transferability of this technique is not very
likely due to the inherent dependence of facial feature extraction
and analysis on the adveriserial FR model party. Also, this is not
a distortion technique that can be used an uninformed OSN user
due to high computation and technicality making it unscalable for
independent individuals. [31]

Limitations: One big limitation apart from the utility loss must
be high computational effort needed to use this technique. The face
must first be taken apart into features than be changed one by one,
making it very difficult for both large and small scale usages.[31]

Robustness Categorization: Low
Explanation: Robustness is classified to be low category due to

lower de-identification rate as well as obvious utility and transfer-
ability issues in its implementation to privacy protecting OSN’s.

3.3.6 Privacy-Protective-GAN for Face De-Identification.
De-Identification Rate: Privacy Protective-GAN’s employ a very
sophisticated method where they estimate the similarity between
the edited and original pictures as well as calculate de-identification
rates by deep neural networks at every step of edition of the origi-
nal picture. It changes the attacked parts of the face using the facial
analysis and feature extraction just like attacking party does. How-
ever, it succeeds to completely change the face print of the user so
that FR models cannot match the user’s face using the data trans-
formation. As can be seen in the result table, the de-identification
rate is among the highest yielding a very reliant facial privacy
preservation technique. [32]

Utility: Since this method continually assesses the similarity
between the original picture and edited one using mean squared
estimation (MSE) while generating new features, we can speculate
that it yields pretty good utility results. To the naked eye, humans
cannot perceive very large difference between privacy protected
generated and original face. Therefore, it would be quite useful for
daily OSN users. [32]

Transferability: The proposed researchers tested their GAN in
multiple large datasets including CelebHQ database and Radboud
Faces Database and multiple different FR models. They all seem to
have similarly high de-identification results. In addition to that, the
fact GAN algorithm training on on adversarial FR models’ training
sets contribute to very high transferability. [32]

Limitations: One big limitation could be the GAN algorithms’
abstraction of the content of the photo. For instance, if one wear a
hat or a bold sunglasses, these objects tend to be either disappeared
or blurred into the background. Also, this is not a very appropriate
distortion technique for preserving privacy by non-technical users,
and it would be too costly to implement it in bigger scale OSN’s
regularly. [32]

Robustness Categorization: High
Explanation: Due to high de-identification rates, good utility

processed images, and high transferability, Privacy-Protective-GAN
has high robustness among other privacy-preserving techniques.

Overall, the robustness of various face de-identification tech-
niques is evaluated based on a comprehensive analysis of multiple
metrics, including de-identification effectiveness, utility, transfer-
ability, and robustness. High robustness indicates strong resilience
against attacks and variations, medium robustness suggests a bal-
anced performance with some vulnerabilities, and low robustness
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Table 4: Distortion Technique Performance Comparison for Computer Vision-Based Attacks

Gaussian blurring Differentially Private Face Pixelation Noise Addition Geometric Distortion Face feature space perturbation Privacy-Protective-GAN for Face De-identification K-Anonymity with Decoy Images
De-identification 0.660 0.770 0.880 0.605 0.870 0.800

Utility N/A 0.01 0.400 0.112 0.180 N/A
Transferability Yes Yes Yes No Yes No
Robustness Low Low Medium Low High Low

implies susceptibility to attacks or challenges inmaintaining data in-
tegrity and privacy. For a numerical comparison of the mentioned
de-identification techniques, refer to Table 4. We choose to use
de-identification effectiveness over other metrics. Because of the
heterogeneity of environments where the performances are tested,
it wouldn’t be very accurate to depend only on a single type of
metric. Thus, we choose to evaluate de-identification techniques
based on their overall performance across multiple metrics (how-
ever, the de-identification score represents an overall view). We also
considered utility metric because it is crucial for a big-scale OSN
not to lose data utility.

4 SYSTEM RECOMMENDATION
Considering the empirical and holistic comparison of different dis-
tortion techniques for the selected profile-matching attack types,
we propose one system recommendation for each OSN type, struc-
tured and unstructured. The methods used in the recommendations
can be changed according to the general structure of the OSN. So,
it is assumed that any other factor that is not mentioned explicitly
is suitable for the application of the techniques.

4.1 Structured Online Social Network

Figure 8: Recommended System Diagram for Structured OSN

In this system (based on structured OSN), sensitive data from a
non-malicious (i.e., regular) user is processed by the internal system
of the OSN, which stores the original graph structure in a database
(DB). The graph data then undergoes pre-processing (for instance,
node similarity calculation) and is then subjected to a clustering
algorithm, enhanced with DP (differential privacy) algorithm to
introduce noise to the node similarity metric during clustering.
With the successful completion of the clustering algorithm a post-
processed graph is created and stored back in the DB. This second
DB can be a replicated DB (optimally), physically different from

the first DB used to store the pre-processed graph. When a query
is made by an adversary, the system uses DP algorithms during
the query to add noise to the post-processed graph data, ensuring
privacy preservation further. The selected distortion techniques
include a hybridmethod of graph clustering using theAPGEmethod
and DP-Adv differential privacy technique applied during and after
clustering [54][55]. The DP algorithm utilizes privacy loss budget to
fine-tune its parameters so that an OSN can give its own budget for
privacy loss to determine the level of utility loss[54]. For example,
if an adversary queries the DB (or, for instance, just sending a query
to Instagram) for user connections, the system will provide results
that have been clustered and noise-added, making it difficult to
identify specific users while maintaining the overall utility of the
data. This approach ensures the protection of user identities and
relationships in the OSN.

After evaluating the empirical and holistic results represented
in Table 3, we came to the conclusion that DP and clustering meth-
ods both provide the highest robustness while providing the best
protection rate (regarding the F1-Score). Also, because we utilize
two different distortion techniques, it is possible to cover the weak
side of each other technique with another one, which is the main
motto of hybrid method.

4.2 Unstructured Online Social Network

Figure 9: Recommended System Diagram for Unstructured
OSN

In this system (based on unstructured OSN), similar to previous
system recommendation, sensitive data from a non-malicious user
is processed by the internal system of the OSN, which stores origi-
nal image and textual data in separate databases (DB). The image
data undergoes anonymization using an Image Noise Addition algo-
rithm, which introduces noise to protect the image data. Textual
(attribute) data is generalized using a Generalization Algorithm to
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ensure data privacy while maintaining utility. This generalized tex-
tual data, combined with the perturbed image data, is then stored
in an attribute DB. For post-processing, a K-Anonymity filter is
introduced to further anonymize the data, ensuring that each piece
of data is indistinguishable from at least K-1 other pieces. When a
query is made by an adversary, the system provides anonymized
data, protecting the identity and attributes of users while maintain-
ing the overall utility of the data. The selected distortion techniques
include Image Noise Addition for image data, Generalization using
BERT + CRF for textual data, and K-Anonymity for post-processing
[56][42]. For example, if an adversary queries the DB for user im-
ages and attributes, the systemwill provide results with added noise
and generalized text, making it difficult to identify specific users
while maintaining the overall utility of the data. This approach
ensures the protection of user identities and attributes in the OSN.

After evaluating the empirical and holistic results represented
in Table 2 and Table 4, we concluded that combining image noise
addition and generalization techniques provides a balanced robust-
ness and overall privacy rate considering (F1 or generalization and
de-identification of noise addition). Utilizing multiple distortion
techniques allows us to cover the weaknesses of one technique with
the strengths of another, which is the main principle of the hybrid
method.

5 CONCLUSION
In this study, we examined a range of distortion techniques aimed at
mitigating the risk of profile-matching attacks in online social net-
works. Our analysis focused on structured and unstructured OSNs,
exploring the inherent vulnerabilities and the effectiveness of vari-
ous defense mechanisms. As a novelty, we provided a comparison
of the performances of these distortion techniques.

Profile matching attacks pose significant privacy risks by linking
discrete pieces of user information across multiple platforms. To
counter these threats, we investigated several distortion techniques,
including data perturbation, noise addition, anonymization, tok-
enization, hashing, suppression, and generalization. Each method
offers unique strengths and challenges in balancing the trade-off
between data utility and privacy protection.

Data Perturbation involves altering the dataset to prevent the ac-
curate reconstruction of the original data, ensuring privacy while re-
taining analytical value. Noise Addition masks numerical attributes
by introducing random errors, which effectively obscure sensitive
information. Anonymization reduces identity, attribute, and infer-
ence disclosures by modifying identifiable information, albeit often
at the cost of data utility.

Tokenization segments text into tokens, enhancing information
retrieval efficiency while protecting data. Hashing transforms input
data into fixed-size hash values, providing a robust method for
data verification and secure storage. Suppression and Generaliza-
tion modify or remove data attributes to reduce specificity, thus
preventing precise user identification.

Our empirical comparison highlighted that no single technique
is universally superior; instead, the choice of technique depends
on the specific requirements of the OSN and the nature of the data
involved. Techniques like data perturbation and noise addition are

highly effective in structured networks, while anonymization and
hashing are particularly beneficial in unstructured environments.

Ultimately, the deployment of these techniques must be care-
fully managed to maintain user privacy without compromising the
functionality and utility of social networks. Our study contributes
to the existing literature by providing a comprehensive evaluation
of distortion techniques, guiding the development of more secure
and privacy-preserving OSNs. Future research should focus on the
continuous improvement of these techniques and their application
in diverse online environments to further enhance user privacy.
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