
 NullReferenceException
in .NET applications

compiled to
Native code

From detailed analysis by supervacuus here

https://github.com/dotnet/android/issues/9055#issuecomment-2261347912

try
{
 var s = default(string);
 var c = s.Length;
}
catch
{
 // ignore
}

Page Fault

Machine Code
🚦

Signal
Handler Chain

Native Compilation

● Other handlers
● .NET SDK
● Native SDK

↑ Order of execution

Signal Handler Chain
Since the Native SDK installs its signal handler last, it will be the first in the signal chain.

● Other handlers
● .NET SDK
● Native SDK

↑ Order of execution

Signal Handler Chain

SIGSEGV reported as native crash
(unaware it’s running in the CLR)

Since the Native SDK installs its signal handler last, it will be the first in the signal chain.

● Other handlers
● .NET SDK
● Native SDK

↑ Order of execution

Signal Handler Chain

Raises a managed code exception
(NullReferenceException)

Since the Native SDK installs its signal handler last, it will be the first in the signal chain.

● Other handlers
● .NET SDK
● Native SDK

↑ Order of execution

Signal Handler Chain

Discontinues Signal Chain
(not reported in logcat)

Since the Native SDK installs its signal handler last, it will be the first in the signal chain.

Theory
- Invoke the dotnet runtime handler before the NDK handler

- NDK handler would never execute for handled managed code exceptions

- Only invoked if the runtime handler continues the signal chain (unintended CLR crash or native code crash)

Attempted Solution

● Other handlers
● Native SDK
● .NET SDK

↑ Order of execution

Discontinues Signal Chain

Reality
- Invoke the dotnet runtime handler before the NDK handler

- NDK handler still executes (even for handled managed code exceptions)

Attempted Solution

● Other handlers
● Native SDK
● .NET SDK

↑ Order of execution

Unhandled SIGSEGV crashes
the application ⚠

