ChairGuru - A Self-Configurable Chair System

Alec Damien

Dept. of Electrical and Computer Engineering

University of Central Florida
Orlando, United States

Andrew Fugate
Dept. of Electrical and Computer Engineering
University of Central Florida
Orlando, United States

Abstract—ChairGuru aims to create a modular solution for
classroom chairs, restaurant seating, and other similar seating
platforms that aids in the movement of chairs positions in
a defined area. ChairGuru contains Ultra-wide Band (UWB)
technology that communicates with stationary anchor beacons
to reconfigure a chair’s position. The chair’s movement is
achieved using finely tuned stepper motor drivers and unique
omnidirectional wheels and movements. As a final product
scope, a classroom quantity of ChairGuru equipped chairs can
all communicate with each other and intelligently reconfigure
themselves into varying layouts at the touch of a button, without
issue. Some examples of configurations can include a group of
four configuration, a standard test-taking layout with all chairs
facing forward, or all chairs facing inwards in a circular fashion.

Index Terms—Motors, Time, UWB, ESP32, Location, Anchor,
TB6600, DW1000, User, Server, Interface, Data

I. INTRODUCTION

Classroom chairs and attached chair-desk combinations re-
main in high demand for public school systems and other
organizations that require these platforms in learning environ-
ments. When considering the typical American grade school
education, most Americans find themselves sitting in these
chairs for at least thirteen years of their life from Kindergarten
to senior year of high school. In higher education, the same
models of chairs and desks remain in college and university
classrooms where those same students are again exposed to
them.

Classroom chairs and desk are frequently moved around
the classroom; typically due to movement for cleaning of
floor surfaces or to reconfigure their position from traditional
classroom orientation to small groups to work with colleagues,
or to large circles for entire class discussions. With respect
to the educator that has to reconfigure a whole classroom,
or the lone cleaning staff that needs to vacuum a carpet,
ChairGuru aims to remove the burden of moving many chairs
by hand by implementing a simpler action managed by fine-
tuned hardware and a user-friendly interface.

Yvan Pierre Jr.
Dept. of Electrical and Computer Engineering
University of Central Florida
Orlando, United States

Erik Barcelo
Dept. of Electrical and Computer Engineering
University of Central Florida
Orlando, United States

II. HARDWARE COMPONENTS
A. Microcontroller (ESP32)

The ESP32-WROOM-32D-N8 microcontroller unit (MCU)
serves as the brain of the ChairGuru’s custom printed circuit
board (PCB). The MCU integrated a 40 MHz crystal, 8 MB
SPI flash, Wi-Fi up to 802.11n protocol, and bluetooth v4.2
as part of its feature set. The ESP32 communicates with our
Ultrawide Band chip (DW1000-derived BUO1) using the Serial
Peripheral Interface (SPI) over four user-selectable GPIOs to
include chip select, SPI clock, Master In Slave Out (MISO),
and Master Out Slave In (MOSI) to exchange high-speed data
exchanges and high-rapid response times.

In addition to SPI Configurations, the ESP32’s Bluetooth
and Wi-Fi Capabilities facilitate data transfer to external
devices and cloud servers, enabling live tracking and control
over a network. This will allow for receiving commands and
then sending location data to the central HTTP server. With
multiple of these being parts of the board and integration of
all SPI lanes, the ESP32 chip contains 21 more GPIOs to be
reconfigured for stepper motor drivers and HC-SR04 ultrasonic
sensors. Two 19x1 solderable headers were included for the
GPIOs, with ground (GND) pins strategically allocated for
attaching the peripherals. With four total stepper motor drivers
ideally using two GPIOs per driver, the ESP32 maintains
a sufficient amount of pin-outs for operation. Our ESP32
integrates satisfactorily on the board, utilizing the 3.3V rail
provided by a LM1117-3.3 voltage regulator powering other
components on the board.

This setup not only ensures reliability and longevity in
operation but also allows the ESP32 to handle various tasks
simultaneously without interference or power dips, maximiz-
ing efficiency in both UWB communication and peripheral
management. The design thus combines high flexibility with
stable connectivity and robust control, allowing ChairGuru
to scale and adapt to a variety of applications in real-time
positioning and automated movement.

B. UWB Microcontroller DW1000 (BUOI)

The basis of communication between multiple ChairGurus
and stationary beacons relies on Qorvo’s Decawave DW1000

MCU. The DW1000 is a low-power and low-cost integrated
circuit (IC) chip compliant with standard IEEE 802.15.4-
2011. that provides for precision location tracking. The chip
is primarily used in a two-way ranging location system with a
precision of 10 cm, with data transfer rates of up to 6.8 Mbps
and an impressive precision of 10cm. Other desirable features
includes relatively low power usage, feasible PCB installation,
and usage of the 3.3V rail existing on the PCB, which help
it’s performance on an custom PCB ideal.

The DW1000 is further built upon using a modified IC
called the BUOI developed by Ai-Thinker. The BUO1 has
multiple enhancements that make it suited for it to be ran
in difficult enviroments, such as the antenna design, radio-
frequency (RF) circuit, power management, and a clock cir-
cuit. The optimized antenna allows for an improved range,
stability and precision allowing for a reliable UWB signal
transmissions. The impedance-matched RF circuit is given in
the figure below.

ANT401

UWE_ANT ‘F
o
U402
HHMI1593A1
1 B 3

“
J‘
+

Fig. 1: Impedance-Matched Circuit for UWB

C. HC-SR04 Ultrasonic Sensor

The HC-SRO04 is a popular ultrasonic sensor module de-
signed for distance measurement, capable of detecting objects
within a range of 2 cm to 400 cm with an accuracy of ap-
proximately 3 mmy4]. It operates by emitting a high-frequency
ultrasonic sound wave (40 kHz) from its transmitter, which
then reflects off any object within its detection range. The
sensor’s receiver detects the reflected sound wave, and by
calculating the time it takes for the echo to return, the HC-
SR04 accurately determines the distance to the object. This
makes it highly useful in applications requiring proximity
sensing or collision avoidance, particularly in environments
where visual sensors may struggle to differentiate between
obstacles.

The HC-SRO04 has straightforward hardware requirements,
typically interfacing with a microcontroller via two pins: a
trigger pin to start the ultrasonic pulse and an echo pin to
receive the pulse back. This simplicity makes it a versatile
and cost-effective option for various projects, from robotics
and drones to obstacle detection in automated systems. By
using sound waves rather than light, it is well-suited to detect
objects in environments where lighting conditions or object
transparency might affect the performance of optical sensors,
such as in low light, fog, or areas with reflective surfaces.

In the ChairGuru setup, where chassis tracking and navi-
gation are primarily reliant on UWB and location-based data,
there’s still a need to account for nearby objects that may
not be trackable through the main positioning system. For
instance, stationary obstacles or transient objects like people
or pets in close proximity might not always be mapped in real-
time by UWB triangulation alone. This is where the HC-SR04
ultrasonic sensors add an essential layer of safety. Positioned
on the chassis, these sensors act as an immediate obstacle
detection system that can detect and measure distances to
nearby objects in real-time.

Using ultrasonic sensors like the HC-SR04 allows the
ChairGuru to continuously scan its immediate surroundings for
untracked objects. If an obstacle is detected within a predefined
“safety zone,” the control system can halt the movement of
the chassis to avoid collisions. This layer of protection is
especially valuable in dynamic environments where tracked
and untracked objects may coexist, and unexpected obstacles
can suddenly appear. By combining the precision of UWB po-
sitioning with ultrasonic-based proximity detection, the Chair-
Guru achieves a comprehensive awareness of its surroundings,
ensuring smooth and safe navigation even in challenging or
crowded spaces. This approach maximizes safety for both the
system and any nearby individuals, providing an added level of
reliability to the overall positioning and movement framework.

D. Battery Configuration and Regulation

During the research phase of the project, a 12V, 9Ah sealed
AGM lead-acid battery was elected to power both the PCB and
motor drivers. However, two configuration changes were nec-
essary to refine operation of the system. The first included the
increase from a 12V to a 24V system for powering four motor
drivers, as one 12V battery could not deliver enough current
for maximum output during stress testing. Thus, prototyping
included an additional sealed lead-acid battery in series with
the first battery for one chassis.

In addition to maintaining 24V, our battery technology
has also been modified. ChairGuru now employs a LiFePoy
battery. A reduction in weight of 12 pounds for two sealed
lead-acid batteries down to 2.09 pounds for one 25.6V battery
significantly helped chassis rigidity. As a minor drawback, the
new battery technology delivers 4Ah compared to the lead-acid
battery’s 9Ah, but is predicted to be sufficient for a typical use
case.

The second modification for powering the chassis included
isolated motor driver circuits and PCB circuits. During pro-
totyping, CP2102N USB-to-UART ICs and ESP32 ICs were
electrically damaged due to breadboard mishandling, with
voltages exceeding their absolute maximum ratings. Thus, the
new 25.6V battery powers four motor drivers as an isolated
loop. The PCB, containing the ESP32 and DW1000 MCUs
contains a four AA battery arrangement producing a peak
6V. An LMI1117-3.3 steps down this voltage to a usable
3.3V for both MCUs. Additionally, 6V does not meet the
absolute maximum ratings that can electrically damage the
MCUs should the regulator malfunction.

E. TB6600 Motor Drivers

While researching motor drivers we could use for the project
we came across the commercial TB6600 Stepper Driver. This
stepper driver supports both speed and direction control while
also being adaptable to several different micro step sizes and
current outputs via a series of DIP switches. Initially, we chose
these drivers for their “plug and play” nature and ease of setup.
All of the terminals can be easily accessed and wired into our
pcb. This also made the design of our code relatively simple
since it relied on sending a signal to the pulse pin within a
loop and toggling the direction pin.

During initial testing with the TB6600 and a NEMA 17
stepper motor, we ran into an issue where we could not get
consistent rotation out of the motor with stuttering. We tried
everything from changing out the driver, wires, dev board,
etc. We were not able to get these drivers working for us
which drove us in another direction. The DRV8825 was the
next driver we tried to test with. This time we were able to
get the motors turning without stuttering and were even able
to breadboard with multiple motors/drivers on the same dev
board. This is where a big issue came up with the DRV8825.
On the DRV current output is modified by turning a set screw.
This meant that it was liable to be altered unknowingly after
being set. Another current issue we had was that when multiple
DRV8825s and motors were connected on the same circuit, the
current setting had to be altered on each driver to make sure
that each motor received adequate current.

Due to the lack of reliability on the DRV8825, we circled
back to the TB6600 and made another attempt at development
with it. We soon figured out that the colored wires of the
NEMA 17 motors were not standardized and thus we had them
installed incorrectly on the TB6600. Once this was rectified
the motors functioned flawlessly. This allowed us to take full
advantage of all of the features present on the TB6600. We
currently have it set to a micro step of 1, giving us 200 steps
per revolution. One of the best features that we are using on
the TB6600 is the fact that it is optically isolated. This means
we can run our 24V battery exclusively on the drivers and have
our pcb powered by a smaller and separate 5V source. This
mitigates the risk of any high voltage issues on our custom
pcb since the 24V battery never comes into contact with it.

While some might consider the TB6600 to have too large
of a footprint, in our application it presents no issue. The
reliability and settings that it offers is much more important
than saving weight or having a smaller overall footprint for
our wiring harness.

F. Nema 17 Stepper Motor

For our application we decided to use a stepper motor over
a traditional DC brushless motor. Stepper motors operate by
providing current to a set of coils in a specific sequence. This
creates a magnetic field that attracts the rotor, allowing it
to rotate. Current is provided in pulses and each pulse will
advance the motor one step. In the case of the NEMA 17 this
is 1.8 degrees. We can alter the sequence in which the pulses
are sent and thus can control direction and speed. Given the

nature of a stepper motor, they are inherently very accurate and
often used for tasks such as 3D printing. The accuracy that the
NEMA 17 series is capable of lends itself to our engineering
requirements. When the chairs are being rearranged by the
user, a high degree of accuracy is necessary to mirror a given
layout.

Once we decided on using a stepper motor, we then had to
choose one that would fulfill both our size specifications as
well as power output specifications. The NEMA 17 series was
a clear winner. Due to the way our chassis was designed and
the wheels we were using, the NEMA 23 size of motors would
have been too large. The first set of motors we tested output a
holding torque of 0.42Nm at 1.5A. With the preliminary idea
we had for our chassis and the weight of our components these
motors would have been adequate for our needs. However,
once we built the first prototype chassis with all of the
necessary parts for the final product, it was clear this model of
NEMA 17 was slightly underpowered. During testing we were
able to complete all necessary movements but it was clear that
the motors were running at the razor’s edge of reliability. It
was also noted that on higher drag surfaces like carpet, the
motors had a substantial struggle moving our chassis laterally.

The solution to this problem was to invest in more powerful
motors. In order to keep our chassis design the same, we
opted to get higher torque output NEMA 17 motors. These
new motors output 0.59Nm of torque at 2A. These output
numbers should easily exceed our power requirements for the
final iteration of our chair chassis.

The driving factor for us choosing to use stepper motors was
their inherent accuracy+. One of the litmus tests we wanted
to be able to pass with our chairs was the ability to reposition
our chairs within 1-5 inches of their starting point. Being able
to move our motors by the step allows us to make micro
adjustments as needed to maintain positional accuracy.

The only downside we have encountered to using the
NEMA 17 series of motors is that they have a lack of options
when it comes to mounting hardware to attach wheels. If given
more time and resources, we would have liked to custom
design and fabricate a better mounting solution than what is
available on the market.

G. Chassis

Our chassis was primarily designed around the size of the
chair we wanted to use for our demo. Once we had the
chair dimensions we were able to go about designing the
chassis with CAD. The original idea was to have a “sandwich”
construction with all of our components in the middle. This
allowed them to be protected while also leaving a clean
platform for our chair to be mounted. The panels of the
“sandwich” were constructed out of 0.25” birch plywood.
Birch plywood was chosen for its rigidity and weight. Birch
plywood is also very easy to work with using hand tools as
well as a laser cutter. The two panels are then joined together
using ¥2” PVC pipe pieces as a spacer with carriage bolts to
hold them together. These spacers were spread apart to equally
distribute the weight of the chair and battery so that the motors

would not be over stressed. Figure 2 below shows our CAD
model for the initial chassis design. In this case it is mostly a
proof of concept as we did not have our chair specifications
at the time of designing it.

Fig. 2: CAD Model of Initial ChairGuru Chassis

After our initial prototype was constructed, we noticed that
when the batteries and chair were mounted, the plywood
panels were bowing inwards slightly. This caused the chassis
to drag on the ground and not give enough clearance for the
wheels to spin freely. This also added a camber to the motors
and wheels which meant our chassis would not drive in a
straight line. At this point we knew that the theory behind
the design was successful but needed a better execution. To
solve our stability problem we elected to add aluminum ribs
to the plywood in order to prevent the wood from bending
under load. For this we used 1/16 thickness angled aluminum
that was mounted on the front and back of each panel.
While aesthetically pleasing, the angled aluminum stiffened
the areas where the chair directly imparts force onto the
chassis. After installing the aluminum we tested the chassis
under load and saw a significant improvement. This was still
using our original motors which are underpowered, thus once
we assemble the final product with the higher torque output
motors it should run flawlessly.

Testing our chassis design was also crucial to identifying
some shortcomings of the components we selected. Foremost
was the type of batteries we were using. The two 12V/9AH
lead-acid batteries weighed in at 12 Ibs. This caused a signifi-
cant strain on our motors which, in hindsight, was unnecessary
given the much lighter weight options for a 24V battery. It also
illustrated how the motors we originally selected were on the
edge of being reliable. Even though our design could work
with the original motors, it made more sense to go with a
higher torque option that would comfortably perform at the
levels we require.

The major aspect that we neglected when designing our
chassis was the actual weight of the components we were se-
lecting. It became apparent very quickly that managing weight
is a huge part of creating a reliably functioning motorized
device. It would have been ideal to know these things before
we started committing to a design but, as has been relevant
with a lot of the subsystems, we didn’t know until we started
working with them hands on.

III. SOFTWARE COMPONENTS

Software is the key to ChairGuru and its’ intelligent func-
tionality, transforming it from a simple motorized device
resembling a large remote control car, to an autonomous
system that assists us. As we enable ChairGuru and its’
features at the hardware level by providing the necessary
components to achieve our goals, the software we implement
here makes these components operate how we intend them
to operate for our user’s experience and overarching system
goals. The overall software system is stacked at various levels
to support a custom communication network that has no need
for internet access, real-time positioning and location tracking,
and dynamic movement control that makes full use of our
hardware. As we begin discussing each component of our
software system, we will see why some of our software
decisions are best suited for these goals.

A. Local Network

Establishing back and forth communication and data ex-
change is the backbone of all of ChairGuru’s technology;
without it, we have no way of controlling movements, in-
terpreting data, and interacting with the device(s) other than
through supplying power. Knowing this, we established a
pseudo local area network (LAN) running on one of the three
anchor points that remain a “permanent” structure put into
place with ChairGuru’s installation. This LAN allows our sever
(discussed later in the User Interface section) to communicate
between all the anchors and each chair in the present area.
This allows us to assign names and profiles to each chair and
device present in a room and allow for direct and intentional
“targeting” of each device with instructions. By assigning
these names via IP address allotting, we are then able to have
our server read information to and from our chairs. This means
we can offload the heavy processing power to our central
server (room and setup specific) and return commands at a
faster rate with higher accuracy as the server sees the entire
space and spatial relation to the other chairs in the vicinity.

With these benefits being the main driver of this decision,
there also exists enterprise reasoning to utilize this LAN setup.
As we intend for the ChairGuru to be implemented into public
places like school, restaurants, and other places, the ability to
control network security and/or integrate the LAN into pre-
existing networking established by a facilities IT department.
This allows for even tighter integration into the user’s domain
and current technology setup; or allows for a network to be
configured in an environment lacking pre-existing network
connectivity. This is ran off of an ESP32 acting in access
point operation with specific IP allotting instructions flashed
onto it.

Finally, the last benefit to the LAN is that it benefits
both the user and ChairGuru themselves as it keeps latency
and bandwidth concerns to a minimum. As the ChairGuru
is ’self-contained”, there is no need to use bandwidth on
already questionably stable networks, for example, or worry
that communication could be slowed between the ChairGuru
server and on-board devices.

o

Fig. 3: ChairGuru Network Design

B. Triangulation

In order to calculate and produce location data, we utilized
a Makerfabs chip that builds on an ultra-wide-band (UWB)
module produced by Qorvo, the DW1000. This allows us to
utilize UWB with a specially designed antenna to get the
most range and accuracy out of the UWB protocol. This setup
utilizes a minimum of two DW1000 anchor points and at
least one ChairGuru PCB to determine and transmit location
data. In our setup, we are using two main anchor points, a
number of ChairGurus as determined by the end-user (in our
demonstrations case, two), and a DW1000 module operating
as a third anchor on the LAN PCB board. This LAN PCB
allows for the positioning to rely on an extra relation point
from the DW1000 and communicate information directly to
LAN ESP32 via SPI as a redundancy.

UWB transmits information across a wide bandwidth of
500 MHz or greater. UWB generates radio energy at specific
time intervals and occupies a large bandwidth, enabling time
modulation. The time modulation can be modulated on UWB
signals (pulses) by encoding the polarity of the pulse, the
amplitude, or by using orthogonal pulses. UWB pulses can
be sent at relatively low pulse rates for supporting time or
position modulation. High-Grade Pulse-UWB systems have
been capable of channel pulse rates in excess of 1.3 billion
pulses per second. This set of protocols helps enable our
triangulation and positioning system.

With each ChairGuru chassis treated as a mobile tag in the
triangulation setup, each unit continuously sends UWB loca-
tion data to the main server. This data is transmitted through
an HTTP server to collect and analyze each ChairGuru’s
coordinates in real time. By calculating the relative distance of
each mobile tag from the primary anchor points, we are able
to pinpoint the exact position of each chair within a given
space. The DW1000 modules used as anchors on the LAN
PCB establish a stable communication framework, allowing
each ChairGuru to determine its location with respect to other
tagged units.

To ensure that each ChairGuru remains in a defined, non-

overlapping area, our system uses real-time distance checks
between each chair’s coordinates. This safeguard prevents any
two ChairGurus from occupying the same physical space,
which could result in conflicting positional data or inter-
ference. The server processes these location updates, cross-
references them with pre-set distance thresholds, and flags any
potential overlap zones. Through this layered configuration,
we achieve reliable multi-point triangulation, allowing each
ChairGuru to operate independently while maintaining spatial
awareness within a shared environment.

To maximize accuracy and minimize the loss of data, the
ChairGuru setup incorporates redundancy through the addi-
tional DW1000 anchor on the LAN PCB, which supplements
the data from the primary anchors. This redundancy provides
an extra layer of reliability, ensuring that each position reading
is cross-verified and refined, even in environments with po-
tential signal interference or obstructions. Each ChairGuru tag
leverages the UWB protocol’s high-precision timing to send
pulse signals back to the anchors, which then compute the
tag’s exact distance and position through multilateration. This
precise time-of-flight data, when triangulated from multiple
reference points, enables the server to calculate each chair’s
orientation and location within a few centimeters of accuracy.
This allows the system to scale seamlessly in larger spaces
with additional ChairGurus and anchor points, while main-
taining low latency and high positioning accuracy.

Other wireless
communication
Bandwidth: 1 MHz

Other wireless
communication
Bandwidth: 20 MHz

Spectral Density

uwse
Bandwidth: 500 MHz - several GHz

Frequency

Fig. 4: Spectral Density versus Frequency

The UWB radio system is used to determine the "time of
flight” of the transmission at various frequencies, where the
speed of flight is that of light.

Distance = Tpyrop * Light (D

For a basic UWB ranging system, we can consider single-
sided or double-sided two-way ranging as shown in the image
below.

A message (TX) is sent from device A and the time is
recorded. When device B receives the message, the message
time is recorded once more. After a delay, 1.y, Device B
sends a message (TX) to device A and the time is recorded
another iteration. From this flight loop, we derive:

Tprop - (1/2) (Tround - Treply) (2)

|
< .,
[Toound "

Device A
ame
TXEI: RXEI:I
(- | o +
\ | \ [} | |
Vo ! I |
') 1>
oy e Iy mp
[1 [I
e I I S I B
RX - r X —
RMARKER" ™ reph !

Fig. 5: Visualization of Ranging

For reliability, a four-message mode is employed using the
UWRB setup as shown in the figure below.

. Tt —> T, py—!
DCV‘CCA(:II: | i] [i N i time
1 f 1 f 1 | —
X | | RXY | PR | P X |
- I o foy o |
T Loy I I | |
1% 4 1 ! e |->::1? I
| | pop | [Ll | | | o) | | op\
Loy [I I I by
i Vo ¥ [| |] ¥ v
Device B i l 1 i I i | i
xtt— ol RX

RMARKER™" " [Typppyy =

Fig. 6: Visualization of Four-Message Ranging

With the implementation of four-message mode ranging, the
following time propagation equation is derived below.

(Troundl * Tround2 - T’r‘eply * Treply?)
Troundl + Tround2 + Treply + TTeplyQ)

With a baseline orientation of two development kits as
stationary anchors, and our custom PCB (the ChairGuru plat-
form) as a tag, the three devices can communicate using the
propagation algorithm given earlier. To determine the position
of the tag, we use the law of cosines to get cosine of A and
the sine of A using the following formulas:

Tprop = (3)

b2 4 2 — g2
CoStx = Tb*c (4)
sin%0 + cos?0 = 1 5

From these equations, we can determine the angle and
distance of the tag as shown in the triangulation visuals above
and return this data as a useful piece of information to our
server for position processing.

C. Motor Control

In order to successfully control the Nema 17 stepper motors,
another part of our software systems had to be created for this
sub-system. Not only do we need special movement classes to
take in movement and how much, but we also must ensure the
right movement is being outputted and that the correct GPIO
pins are being activated for each wheel.

Since we are using omni-directional wheels, we have extra
movement cases; the traditional four we are accustomed to

C

Fig. 7: Triangulation

being forwards, backwards, left, and right, but also having
access to lateral left and right movement, centered rotations,
and four more diagonal movements. Once configured, these
can all be put into custom functions to be called by our devices
as information is sent to them from the server. By being able
to pass in a directional variable (where “fwd” might mean
“forward” and “brd” might mean “backward right-diagonal”,
etc.) along with a inches amount, we can offer precise control
of our ChairGuru’s that is in a constant feedback loop with
the positioning system to achieve the results.

As for how we are controlling the motors, it’s simply output
via the GPIO pins on our custom ChairGuru PCB that is
controlling the motors enable, direction, and pulse pins. These
GPIO’s are connected to our TB6600 motor driver and deliver
the electrical pulses to make the motors turn. This section was
discussed above in the Hardware Components section, but is
again a relevant topic for how we send signals for movement
and how they are ultimately executed, from server to physical
movement.

D. User Interface & Server

Despite all of these software subsystems working to produce
usable and reliable data, their total sum is useless to us without
some way to tie them all together. With this, we showcase out
user interface and the server that runs everything as the overall
brains of this reconfiguration system. Taking in data from the
triangulation subsystem, managing various devices connected
to the LAN, producing results from this data, conveying
said data to the user on an intuitive user interface, and then
transmitting back onto the ChairGuru movement field, was our
big software undertaking.

To implement this all, we first began by breaking down
what we wanted our software flow to look like. The biggest
layout for this process was what we wanted our software
class diagram to look like and what info/data needed to
be where within the system. As seen in figure 8, the class
diagram illustrates the overarching software setup for the
ChairGuru system. It illustrates how the chair exists, what
kind of information the antennas will communicate to discern
each chair, where its’ spatial existence is within a map and
its’ boundary, as well as what type of motor controls we will
need to call for each chair.

Following our class diagram, it was important to understand
how we wanted the system to operate and how we could handle
the expected results. For this, figure 9 illustrates our ideal use
case flowchart.

Antenna Chair WOE
. . B
@ @ .
D int Wheels woc FrontLeft string
ChairlD string FrontRight string
Fixed bool FacingDirection int BackLeft string
Userlnterface bool BackRight string
BatteryLevel int
Location Map —
PowerMode int InGroup bool Group
Grouping Growp [
CurrentRow int NoC int
CurrentColumn int Neighbors =string=
CenteredAt Map
Configuration int
Area Cuts %
D siring D string Map
PermanentCut bool
NorthSouthLength int X-Location int
EastWestlength it NorthSouthLength int Y-Location int
EastWesiLength int Surrounding SoC
Centeradx int Tilt int
Centerady int CenteredX int
CenteredY int
ContainsCutOuts bool
CutOuts <Cuts>
SoC
LRWidth int
FBLengtn int
TBHeight int
SafeBuffer int

Fig. 8: Software Class Diagram

The flowchart shows the higher level process of how our
class diagram should work together. By requesting a move-
ment from the user interface, the user has just initiated the
antennas for all ChairGuru’s and they have began reporting
their location data from the triagulation subsystem. From
here the data is sent to the server via our LAN network
subsystem and the server begins data processing. As soon as
movement is allowed from our flowchart condtions, the server
displays the movements to the user interface and sends motor
control commands again back over the antennas, to the specific
ChairGuru, and through the motor control functions. All of this
being constantly monitored by our built in software collision
avoidance and path planning systems, and ready to be stopped
at a moments notice.

Chairs new
position is
calculated and
sent fo chair

Chair is taken out
of LPM and
confirms location

Fautode | "¢
Enabled

Chair cannot move within this
movement request and must
be reset manually using
debugging header pins

Movement
Requested

Is chair in
desired
position?

Increment
emergency stop
counter

Low power
mode:
enabled

Fig. 9: Movement Flowchart

From here, the ChairGuru system will finalize movements,
and enter low-power mode, ensuring battery levels are opti-
mized to make it through a day and that the system is ready for
its next command without being a hindrance to the activities
around it.

To illustrate this at a more complete subsystem level, figure

10 below shows the way we have our various subsystems
connected.
Legend
Antg::g;r(xa) }—)'[US[\%:;':QEE J [C“;"?Qcae;n“j?y] WiFi 2 4GHz
UART (Al protocols)
PWM
i«
[Chair] { Chair J] Direct
4—| Emergency Stop
DW1000 ESP32 use

¥

A
Ultrasonic Collision
ri?g’gﬁ;ﬂ?::‘ﬂ?g Sensor Motor Gontroller
(stretch goal)

Fig. 10: Communication Block Diagram

Seeing the communication block diagram tie together nine
various subsystems via five different methods helps us un-
derstand how this product pulls the subsystems together to

produce a

functional and useful device.

With the software implementation and use cases being

described,
will input

we may be concerned with how exactly a user
data? We don’t expect the user enter a precise Xyz

steps in the correct orientation obviously. Instead, we offer
a simple graphical user-interface (GUI) that allows them to
create their layouts, plan their space, view current layouts,
and initial reconfiguration; all at the users finger tips with
no backbend knowledge of the system required! While this
is great for an end-users experience, what exactly are they
initiating with their points of contact?

Taking a better look now at how users can interact with
the software systems, the figure below shows their three main
points of interaction:

/ Chair Configuration System

Map Room/Area

M

includes

»_ Design Groups

¥
L]

T
|
E:z' includes

__"_“0"'9 Chair;) Chair database
> Monitor Battery
B
Publish Configurations
Teacher A
or other i\ extends
user H MCcu
Store User Settings
/Y\includes
iI'IC|I.IC|EE\V
Authenticate User Device
\ / Backend server
Fig. 11: Use Case Diagram
Firstly, we see the areas in green representing database

interaction. This is the most important part as the user should
spend upwards of 95% of their time here when working with

ChairGuru. This interaction with designing groups and setting
up their space in the mapping areas allows them to create a
custom solution to their exact room dimensions and obstacles.
From here users add or remove chairs from their room, create
their various layouts to rely on certain conditions such as room
location (for rotating teachers or times on the daily schedule)
and edit old layouts.

From here the user can initiate the ChairGuru movements
by accessing the database and start the path planning process.
The server is the key to all user initiated controls; and it stems
here from the database access that is “hidden” on the back-end.

Next, the user has some access to monitor chair status
details. As we wanted to implement a battery monitor and
autonomous, inactive hours, re-charging, the user could log in
and see the battery level along with other various maintenance
related items. These other related items could be minor warn-
ings such as if a certain motor was not performing as well
as intended, if the network connection was unstable, or if the
chair collision sensors were tripped and sent into fault mode;
to name a few. This interaction is largely a stretch goal but
key to maintaining the ChairGuru fleet when we as developers
are no longer around their deployments to diagnose the issues.
This also work more hand-in-hand with figure 10 above where
we talk about a custom debugger as another stretch goal. If
we were to estimate a percent amount of time a user should
spend in this part of the ChairGuru software system, we would
ideally like to be as close to 0% as possible. With this, we’d
like to see a user spend 1% or less time here as we aim to
make maintenance as unneeded as possible.

Lastly, we have the last 4% of the time a user should spend
interacting with the ChairGuru. Here we see the user settings
and ways to actually access the software. We wanted to create
a seamless user experience that didn’t require constant logging
in and out and instead should know who is logged in and what
permissions, settings, and preferences they are entitled to. Our
ideal use case would be to run ChairGuru as a computers
service that runs on startup and initializes the chairs without
manual input. This will pull user login data from their user
account on their computer, ideally being an enterprise account
such as a Microsoft enterprise domain.

This user interaction area enables the system to be used
by various users and store configurations in multiple ways,
including to the users account or to a room account where
multiple users can share layouts OR maintain their own set
of layouts for the same room. This also allows users to
authenticate new devices to control the system in the event of
wanting to use a different interface device, or to block potential
wrongdoers.

E. MongoDB within MERN Stack

Knowing now the majority of our software systems, we keep
referring to our server; but what exactly is it? Well to start,
it is a MERN stack that makes our ChairGuru website fluid
and interactions with various software components seamless.
The letters stand for MongoDB, the database, Express, a back-
end framework, React, a front-end JavaScript framework, and

Node.js, a package manager and front to back end interface
for the server commands.

React and Express offer great and industry standard frame-
works that work very well for our purposes; thought the most
important parts of the MERN stack for us are the Node.js and
MongoDB portions. Node allows us to work with preexisting
libraries and deploy open source code to use within our server
side code. Some of the most important packages we utilize in
this project include the environmental variable package and
the MongoDB library that allows easy access to our data;
streamlining data transfers and ensuring the focus is on good
data practices rather than simply transferring the data in the
first place.

MongoDB though is an integral part of the ChairGuru as
it is a free and open source database that is able to run
online via their Atlas component of MongoDB, or via the
downloadable version. The ChairGuru is intended to operate
with both versions of Mongo and is able to switch with a
simple change in environmental variable links; something an
IT department would have no issues accessing upon setup. For
our final vision though, we utilize MongoDB downloaded onto
our Windows machine. This is because Mongo is configurable
as a system service that will run on startup and take login
details directly from the ChairGuru user settings, similar to
how the ChairGuru takes user details from a computers user
information; these two systems work hand-in-hand with data
retrieval.

This Mongo setup allows for our system to maintain usabil-
ity while offline and wouldn’t depend on specific computers
if the service was setup on the user enterprise account. This
means multiple things, first, we wouldn’t see users needing to
login into separate accounts multiple times and rather sharing
a single (ideally) one-time login, and second, allowing for
a complete omission of internet latency. This means cutting
out the time delay of sending requests, receiving them back
through limited bandwidth, and avoiding potential for packet-
loss along the way. Keeping a local database ensures the
latency is as minimal as possible; restricted to computer speed
rather than other uncontrollable factors.

F. Acknowledgment

The authors would like to acknowledge Dr. Chan and Dr.
Wei for guiding our research and advising us along the entirety
of our project. We’d also like to acknowledge Dr. Weeks for
the hours of technical help he provided while prototyping and
constructing our project in the lab.

REFERENCES
[1] ”ESP32 UWB Indoor Positioning Test.” Makerfabs,
https://www.makerfabs.cc/article/esp32-uwb-indoor-positioning-
test.html
[2] “ESP32-WROOM-32-Datasheet.” Espressif Systems,

https://www.makerfabs.com/desfile/files/esp32-wroom-32-datasheet-
en.pdf

[3] "DWMI1000 IEEE 802.15.4-2011 UWB Transceiver Module.” Qorvo
Inc., https://www.qorvo.com/products/d/da007946

[4] "How HC-SRO04 Ultrasonic Sensor Works & Interface It With Ar-
duino” Last Minute Engineer, https://lastminuteengineers.com/arduino-
sr04-ultrasonic-sensor-tutorial/

[5] 711 Types of Networks Explained: VPN, LAN, & More” Belden, Inc.,
https://www.belden.com/blogs/network-types

[6] "TB6600 Stepper Motor Driver Specifications” ,
https://bulkman3d.com/wp-content/uploads/2019/06/TB6600-Stepper-
Motor-Driver-BM3D-v1.1.pdf?srsltid=AfmBOopXwRe3Nbok9UG-
6AGUbIimYIsjV8TxSAm9H{x2LrT5SEbJaacc3A

