
ONLINE EXAM PANEL

Under guidance of
Mr . Ashraf Ali

A
Project Report

Submitted Partial Fulfilment Of The Requirement
For The Award Of the

Bachelor Of Technology
Project Carried Out At

Ardent ComputechPvt Ltd (An ISO 9001: 2008 Certified)

132,GroundFloor,SDFBuilding,

GPBlock,SectorV,Bidhannagar, Kolkata

,WestBengal,Kolkata -700091

1

(Note: All entries of the proforma of approval should be filled up with
appropriate and complete information of approval in any respect and

will be summarily rejected.)

1. Name of the Student With Group:

1: Rajasree Laha
2: Md Afsar
3: Abdul Muksit
4:Raj Kumbhakar

2. Title of the Project: Online Exam Panel:

3. Name and Address of the Guide: Mr . Ashraf Ali
Sr. Subject Matter Expert
Technical Head(MERN)

Module #132,Ground Floor, SDF Building,
GP Block, Sector V, Bidhannagar, Kolkata,

West Bengal, Kolkata - 700091

4. Educational Qualification of the Guide:
Ph.d* M.Tech B.Tech*/B.E* MCA* M.Sc*

5. Working and Teaching experience of the Guide : ………Years
6. Software used in the Project: a. Visual Studio Code

1.
2.
3.
4.

Signature of the Students
Date :
For the office use only

Approved Not Approved

2

Project Responsibility Form

Sl Name of Member Responsibility

1 Rajasree Laha Project Leader,
Frontend,Coding,

Face Login
Implementation,
Backend,DB

Implementation

2 Md Afsar Frontend, Coding,
Debugging,

Backend Review
Project Documentation,

3 Abdul Muksit Frontend, Coding,
Debugging,
Admin Panel,

SystemAnalysis.

4 Raj Kumbhakar Coding Rechecking
Backend Debugging,

Project Documentation,
SystemAnalysis.

3

Self Certificate

This is to certify that the dissertation/project proposal
entitled “Online Exam Panel” is done by us, is an
Authentic work carried out for the partial fulfilment of
the requirements for the award of the certificate of
internship of MERN stack under the guidance ofMr.
Ashraf Ali. The matter embodied in this project work
has not been submitted earlier for award of any
certificate to the best of our knowledge and belief.

Name of the Student :
➢ 1: Rajasree Laha
➢ 2: Md Afsar
➢ 3: Abdul Muksit
➢ 4:Raj Kumbhakar

Signature of the students :
1)
2)
3)
4)

4

Certificate by Guide

This is to certify that this project entitled “Online Exam
Panel” submitted in partial fulfilment of the certificate
of Bachelor of Computer Application through Ardent
Computech Pvt Ltd, done by the Group Members

➢ 1: Rajasree Laha
➢ 2: Md Afsar
➢ 3: Abdul Muksit
➢ 4:Raj Kumbhakar

is an authentic work carried out under my guidance &
best of our knowledge and belief..

1)

2)

3)

4)

Signature of the students
Date :

5

Certificate of Approval

This is to certify that this proposal of the Minor project,
entitled “Online Exam Panel” is a record of bona-fide
work, carried out by : 1. Rajasree Laha, 2. Md Afsar, 3.
Abdul Muksit, 4.Raj Kumbhakar, under my supervision
and guidance through Ardent Computech Pvt Ltd. In
my opinion, the report in its present form is in partial
fulfilment of all the requirements. In fact, it has attained
the standard necessary for submission. To the best of
my knowledge, the results embodied in this report are
original in nature and worthy of incorporation in the
present version of the report for Internship For Bachelor
of Technology.

Guide/Supervisor

Mr. Ashraf Ali
Subject Matter Expert & Technical Head (MERN)

Ardent Computech Pvt Ltd (An ISO 9001:2008 Certified) Module #132,
Ground Floor, SDF Building, GP Block, Sector V, Bidhannagar, Kolkata,

West Bengal, Kolkata - 700091

Head of the Department of
Computer Science and Engg..

(Aliah University)

6

SL. No. NAME OF THE TOPIC PAGE
NO.

1 Company Profile 8

2 Introduction 9-11

2.A Objective 10

2.B Scope 11

3 System Analysis 12-22

3.A Identification of Need 13

3.B Feasibility Study 14

3.C Workflow 15

3.D Study of the System 18

3.E Input & Output 19

3.F Software Requirements Specification (SRS) 20

3.G Software Engineering Paradigm Applied 22

4 System Design 23-32

4.A Data Flow Diagram 24

4.B Sequence Diagram 27

4.C Use-Case Diagram 29

5 UI snapshot 33-82

6 Conclusion 83

7 Future Scope & Further Enhancements 84

8 Bibliography 85

7

1. ARDENT COMPUTECH PVT.LTD.
Ardent Computech Private Limited is an ISO 9001-2008 certified
Software Development Company in India. It has been operating
independently since 2003. It was recently merged with ARDENT
TECHNOLOGIES.
Ardent Technologies
ARDENT TECHNOLOGIES is a Company successfully providing its
services currently in the UK, USA, Canada and India. The core line of
activity at ARDENT TECHNOLOGIES is to develop customised
application software covering the entire responsibility of performing
the initial system study, design, development, implementation and
training. It also deals with consultancy services and Electronic
Security systems. Its primary clientele includes educational
institutes, entertainment industries, resorts, theme parks, service
industry, telecom operators, media and other business houses
working in various capacities.
Ardent Collaborations
ARDENT COLLABORATIONS, the Research Training and
Development Department of ARDENT COMPUTECH PVT LTD is a
professional training Company offering IT enabled services &
industrial trainings for B-Tech, MCA, BCA, MSc and MBA freshers
and experienced developers/programmers in various platforms.
Summer Training / Winter Training / Industrial training will be
provided for the students of B.TECH, M.TECH, MBA and MCA only.
Deserving candidates may be awarded stipends, scholarships and
other benefits, depending on their performance and
recommendations of the mentors.
Associations
Ardent is an ISO 9001:2008 company. It is affiliated to National
Council of Vocational Training (NCVT), Directorate General of
Employment & Training (DGET), Ministry of Labor & Employment, and
Government of India.

8

2 .INTRODUCTION
Welcome to our innovative Online Exam Panel, a cutting-edge
solution designed to revolutionise the way users experience digital
examinations. In a world characterised by the need for secure and
efficient testing environments, our platform stands as a beacon of
reliability, providing a seamless and efficient avenue for conducting
exams online. With a user-friendly interface and a comprehensive
set of features, our system allows educators to create and manage
exams effortlessly, while ensuring students have a smooth and fair
testing experience. Leveraging advanced technology, including face
recognition for secure Admin login, our platform offers a robust and
secure environment tailored to meet the needs of modern
educational institutions.

At the heart of our system is a commitment to simplicity and
accessibility. Users can effortlessly navigate through a visually
appealing interface, explore and participate in exams with just a few
clicks. Real-time exam updates ensure that students and educators
have access to the latest information, empowering both exam takers
and administrators. Our system is designed to make the online
examination process intuitive and efficient, fostering a seamless
experience for all users.

Security is paramount, and our platform employs robust
authentication mechanisms to safeguard user information. The
integration of advanced security measures, including face
recognition for Admin login, enhances the overall examination
experience, ensuring that only authorised users can access
sensitive data. Our system is designed to prevent cheating and
protect exam integrity, offering users a secure and trustworthy
environment for all online examinations.

9

2A.OBJECTIVE
The primary objective of our Online Exam Panel is to provide a
streamlined and convenient platform that transforms the traditional
way of conducting exams and managing educational assessments.
We aim to bridge the gap between educators and students, offering
a modern solution that enhances the overall examination
experience for users.

First and foremost, our system seeks to simplify the exam creation
and administration process for educators. Through an intuitive and
user-friendly interface, administrators and teachers can effortlessly
create exams, manage question banks, and monitor exams in
real-time. The goal is to save time and eliminate the complexities
associated with traditional paper-based exams, empowering
educators to focus on delivering quality education.

For students, our system aims to optimise the examination
experience. We provide a centralised platform for exam
management, allowing students to access exams securely, receive
instant feedback, and track their performance seamlessly. This not
only enhances student satisfaction but also improves their overall
learning experience.

Ultimately, our Online Exam Panel strives to redefine the way people
interact with the examination process, making the entire experience
more efficient, secure, and accessible.

10

2.B.SCOPE
The scope of our Online Exam Panel is expansive, addressing the
evolving demands of modern educational institutions and the
dynamic nature of the learning environment. This system caters to a
broad spectrum of users, including students seeking a seamless and
secure exam experience, as well as educators aiming to enhance
their exam management and assessment processes.

For students, the scope lies in the convenience of accessing exams
online, receiving instant feedback, and tracking their performance
in real-time. It offers personalised exam schedules, secure login
features, and a smooth overall experience. Educators benefit from
efficient exam creation, real-time monitoring, and automated
grading processes. The system's scalability and adaptability ensure
it remains relevant in an ever-changing educational landscape,
making it a crucial tool for enhancing the efficiency and
accessibility of online examinations in today's digital era.

11

SYSTEMANALYSIS

12

3.A.IDENTIFICATION OF NEED
System analysis is a process of gathering and interpreting facts,
diagnosing problems, and providing the information needed to
recommend improvements to the system. It is a problem-solving
activity that requires intensive communication between system
users and developers. System analysis or study is a crucial phase in
the development of any system, including our Online Exam Panel.
During this phase, every detail of the system is meticulously
analysed.

The system is viewed as a whole, with input and output processes
identified. The outputs, such as exam results and performance
reports, are traced back to the various processes involved in the
system. System analysis involves understanding the problem,
identifying key variables, analysing and synthesising various factors,
and determining an optimal or satisfactory solution for the system.

Various techniques, such as interviews and questionnaires, are
employed to conduct a detailed study of the processes involved. The
data collected through these methods is thoroughly scrutinised to
reach a conclusion about how the system functions. This phase
defines the existing system and identifies any problem areas.

Once problem areas are identified, the system designer functions as
a problem solver, developing proposals to address the system’s
challenges. These proposals are then compared with the existing
system, and the best solution is selected. The proposal is presented
to the user for approval, and revisions are made based on user
feedback. This iterative process continues until the user is fully
satisfied with the proposal, ensuring the system meets the needs of
all stakeholders.

13

3.B.FEASIBILITY STUDY
A Feasibility Study is a comprehensive assessment conducted to
evaluate the practicality and viability of a proposed project, such as
the development of an Online Exam Panel. This study aims to
determine whether the project is technically, financially,
operationally, and economically feasible. It involves an in-depth
analysis of various factors, including system requirements,
technological capabilities, legal considerations, and available
resources.

During a Feasibility Study, potential risks and challenges associated
with the Online Exam Panel are identified, and potential solutions
are explored. The study helps stakeholders make informed decisions
by providing insights into the project's potential success or failure.
Key components of a Feasibility Study include a technical
requirements assessment, financial projections, operational
considerations, and risk assessment.

Ultimately, a well-conducted Feasibility Study serves as a crucial
foundation for decision-making, guiding stakeholders in deciding
whether to proceed with the development of the Online Exam Panel
or explore alternative options. This process ensures that all
challenges and opportunities are thoroughly understood before
moving forward.

14

3.C.WORKFLOW
This Document plays a vital role in the development life cycle (SDLC)
as it describes the complete requirements of the system. It is meant
for use by the developers and will be the basic during the testing
phase. Any changes made to the requirements in the future will have
to go through a formal change approval process. The Waterfall
Model was the first Process Model to be introduced. It is also
referred to as a linear-sequential life cycle model. It is very simple to
understand and use. In a waterfall model, each phase must be
completed before the next phase can begin and there is no
overlapping in the phases. The waterfall model is the earliest SDLC
approach that was used for software development. The waterfall
Model illustrates the software development process in a linear
sequential flow; hence it is also referred to as a linear-sequential life
cycle model. This means that any phase in the development process
begins only if the previous phase is complete. In the waterfall model
phases do not overlap

❖ Waterfall Model design :

The waterfall approach was the first SDLC Model to be used widely
in Software Engineering to ensure the success of the project. In “The
Waterfall” approach, the whole process of software development is
divided into separate phases. In the Waterfall model, typically, the
outcome of one phase acts as the input for the next phase
sequentially.
❖ Iterative Waterfall Design :

❑ Definition:
Ultimately, a well-conducted Feasibility Study serves as a crucial
foundation for decision-making, guiding stakeholders in deciding
whether to proceed with the development of the Online Exam Panel
or explore alternative options. This process ensures that all
challenges and opportunities are thoroughly understood before
moving forward.

15

The sequential phases in Iterative Waterfall model are:

➢ Requirement Gathering and analysis : and analysis: All
possible requirements of the system to be developed are captured
in this phase and documented in a requirement specification doc.

➢ System Design : The requirement specifications from first
phase are studied in this phase and system design is prepared.
System Design helps in specifying hardware and system
requirements and also helps in defining overall system architecture.

➢ Implementation : With inputs from system design, the system is
first developed in small programs called units, which are integrated
in the next phase. Each unit is developed and tested for its
functionality which is referred to as Unit Testing.

➢ Integration and Testing :All the units developed in the
implementation phase are integrated into a system after testing of
each unit. Post integration the entire system is tested for any faults
and failures.

➢ Deployment of system:Once the functional and non functional
testing is done, the product is deployed in the customer
environment or released into the market.

➢ Maintenance: There are some issues which come up in the client
environment. To fix those issues patches are released. Also to
enhance the product some better versions are released.
Maintenance is done to deliver these changes in the customer
environment. All these phases are cascaded to each other in which
progress is seen as flowing steadily downwards (like a waterfall)
through the phases. The next phase is started only after the defined
set of goals are achieved for previous phase and it is signed off, so
the name “Iterative Waterfall Model”. In this model phases do not
overlap.

❑ Advantages:

16

1 .Flexibility: Iterations permit adjustments based on feedback.

2 .Early Delivery :: Partial systems can be delivered incrementally.

3 .Risk Management :Identifying and addressing issues early in the
process .

❑ Disadvantages:

1 .Increased Complexity: Iterations permit adjustments based on
feedback.

2 ..Potential For Scope Creep : Partial systems can be delivered
incrementally.

3 .Resource Intensive : Identifying and addressing issues early in
the process .

❑ Applications :

The Iterative Waterfall Model is suitable for projects with evolving or
unclear requirements. It is commonly used in software development
projects where regular feedback and refinement are essential.
Additionally, it is applicable in scenarios where partial system
delivery is beneficial, allowing stakeholders to assess progress and
make adjustments.

17

3.D.STUDY OF THE SYSTEM

Modules :

The modules used in this software are as follows:

Login:

1. User Login: Here, users (students or educators) will log in to
access exams and manage their accounts.

2. Admin Login: Here, the admin will log in using the face
recognition technique to oversee exam activities, manage
users, and handle the entire database.

Signup:

1. Register: Here, users (students or educators) will register to
access the exam panel.

Home :

1. Home: This page is the main interface, allowing users to
navigate to various sections of the exam panel.

About Us: This page will provide details about the platform and
its developers.

Admin Interface :

1. User Database: Here, the admin can view and manage the
details of all registered users.

2. Exam Database: Here, the admin can view and manage the
details of all exams.

User Interface :

1. Search for Exams: Users (students) can search for and access
their scheduled exams.

2. Exam Results: Here, users can view their completed exams and
results.

3. Account: Here, users can manage their personal details and
account settings after logging in.

18

3.E.INPUT AND OUTPUT
The main inputs , outputs and the major function the details are :

➢ INPUT :

1 . User Login:User can login by giving his credentials as input on the
login page. (Same for Admin but Admin Can also Login using Face
Login technique) .

2 . Search Functionality: Users can enter their preferred exam subjects
and test names in the search bar.

3 . Update Details: : Users can enter their preferred exam subjects and
test names in the search bar.

➢ OUTPUT:

1 . User View: Users can view the interface showing their exam details,
personal information, and any previous test results.

2 . Admin View:Admins can access and view all databases, including
user profiles, exam details, test results, and system logs.

3 . Exam Management: Exam managers can view the list of available
exams, the list of scheduled exams, and update exam details or
schedules based on availability.

19

3.F.SOFTWARE REQUIREMENT

SPECIFICATIONS
Software Requirements Specification provides an overview of the
entire project. It is a description of a software system to be developed,
laying out functional and nonfunctional requirements. The software
requirements specification document enlists enough necessary
requirements that are required for the project development. To derive
the requirements we need to have a clear and thorough
understanding of the project to be developed. This is prepared after
detailed communication with the project team and the customer.

The developer is responsible for:-

1. Developing the System: Creating the Online Exam Panel that
meets the Software Requirements Specification (SRS) and
addresses all the system's needs.

2. System Demonstration and Installation: Demonstrating the
Online Exam Panel and installing it at the client's location after
successful acceptance testing.

3. Documentation Submission: Providing the necessary user
manual that describes the system interfaces and includes
comprehensive documentation for the Online Exam Panel.

4. User Training: Conducting any required training sessions for
users and administrators to effectively operate the Online
Exam Panel.

5. System Maintenance: Providing system maintenance and
support for a period of one year after installation.

Functional Requirements :

User Registration and Authentication :

1. Users should be able to create accounts securely.

2. The system should authenticate users and manage login sessions,
including secure admin logins using face recognition.

20

Browse and Search:

1. Users should be able to browse and search for exams based on
subjects, exam types, or other filters.

2. The system should authenticate users and manage login
sessions, including secure admin logins using face recognition.

Exam Display:

1. Each exam should have detailed and up-to-date information,
including exam schedules, duration, and instructions.

2. Users should be able to view exam descriptions and any related
materials, such as sample questions or study guides.

Exam Registration:

1. Users should be able to register for exams.

2. Users should be able to specify any required details, such as
preferred time slots, exam centre locations, or special
accommodations.

Non-Functional Requirements :

Performance:

1. The Online Exam Panel should respond to user actions promptly,
with minimal latency during exam operations, such as loading
questions or submitting answers.

2. The platform must efficiently handle increased user loads,
especially during peak exam periods, without significant performance
degradation.

Reliability:

1. The Online Exam Panel should be consistently available and
accessible to users, minimising downtime, especially during scheduled
exams.

21

2. The system should gracefully handle errors or failures, ensuring
uninterrupted service during exams, with mechanisms to recover from
unexpected issues.

Security:

1. Ensure the secure transmission of sensitive information, such as
user credentials, exam data, and personal details.

2. Implement robust mechanisms to authenticate users, including face
login for admins, and authorise access to specific features based on
user roles.

Usability:

1. The Online Exam Panel should have a user-friendly interface that is
easy to navigate, allowing users to focus on their exams without
confusion.

2. Ensure the platform is accessible to users with disabilities,
complying with relevant standards, such as providing screen reader
support and keyboard navigation.

❑ Hardware Requirements:

1 . Computer hasIntel I5 Processor

2 . 8 GB RAM

3 . DVD-ROM Drive

❑ Software Requirements:

4 . Windows 11 OS

. Visual Studio Code

22

SOFTWARE ENGINEERING PARADIGM APPLIED
Software paradigms refer to the methods and steps, which are taken
while designing the software. There are many methods proposed and
are in work today, but we need to see where in software engineering
these paradigms stand. These can be combined into various
categories, though each of them is contained in one another.

The programming paradigm is a subset of the Software design
paradigm which is further a subset of the Software development
paradigm. There are two levels of reliability. The first is meeting the
right requirements. A careful and thorough systems study is needed to
satisfy this aspect of reliability. The second level of systems reliability
involves the actual work delivered to the user. At this level, the system's
reliability is interwoven with software engineering and development.

There are three approaches to reliability.

1. . Error avoidance : Prevents errors from occurring in software.

2. Error detection and correction: : In this approach, errors are
recognized whenever they are encountered, and correcting the error
by the effect of the error of the system does not fail.

3. . Error tolerance : In this approach, errors are recognized whenever
they occur, but enables the system to keep running through degraded
performance or Applying values that instruct the system to continue
the process.

23

SYSTEMDESIGN

24

4.A.DATA FLOWDIAGRAM
A data flow diagram (DFD) is a graphical representation of the "flow" of
data through an information system, modelling its process aspects. A
DFD is often used as a preliminary step to create an overview of the
system, which can later be elaborated.

DFDs can also be used for the visualisation of data processing
(structured design). A DFD shows what kind of information will be input
to and output from the system, where the data will come from and go
to, and where the data will be stored. It does not show information
about the timing of the process or information about whether
processes will operate in sequence or in parallel (which is shown on a
flowchart).

This context-level DFD is next "exploded", to produce a Level 1 DFD that
shows some of the detail of the system being modelled. The Level 1
DFD shows how the system is divided into subsystems (processes),
each of which deals with one or more of the data flows to or from an
external agent, and which together provide all of the functionality of
the system as a whole. It also identifies internal data stores that must
be present for the system to do its job and shows the flow of data
between the various parts of the system. Data flow diagrams are one
of the three essential perspectives of the structured-systems analysis
and design method SSADM. The sponsor of a project and the end
users will need to be briefed and consulted throughout all stages of a
system's evolution. With a data flow diagram, users can visualise how
the system will operate, what the system will accomplish, and how the
system will be implemented. The old system's data flow diagrams can
be drawn up and compared with the new system’s data flow diagrams
to draw comparisons to implement a more efficient system. Data flow
diagrams can be used to provide the end user with a physical idea of
where the data they input ultimately affects the structure of the whole
system from order to dispatch to report.

How any system is developed can be determined through a data flow
diagram model. In the course of developing a set of levelled data flow
diagrams, the analyst/designer is forced to address how the system
may be decomposed into component sub-systems and to identify the
transaction data in the data model. Data flow diagrams can be used in
both the Analysis and Design phase of the SDLC. There are different
notations to draw data flow

25

diagrams. defining different visual representations for processes, data
stores, data flow, and external entities.

26

LEVEL 0 DFD OR CONTEXT DIAGRAM :

LEVEL 1 DFD :

27

4.B.SEQUENCE DIAGRAM
A Sequence diagram is an interaction diagram that shows how
processes operate with one another and what is their order. It is a
construct of a Message Sequence Chart. A sequence diagram shows
object interactions arranged in a time sequence. It depicts the objects
and classes involved in the scenario and the sequence of messages
exchanged between the objects needed to carry out the functionality
of the scenario. Sequence diagrams are typically associated with use
case realisations in the Logical View of the system under development.
Sequence diagrams are sometimes called event diagrams or event
scenarios.

A sequence diagram shows, as parallel vertical lines (lifelines),
different processes or objects that live simultaneously, and, as
horizontal arrows, the messages exchanged between them, in the
order in which they occur. This allows the specification of simple
runtime scenarios in a graphical manner.

A sequence diagram is the most common kind of interaction diagram,
which focuses on the message interchange between several lifelines. A
sequence diagram describes an interaction by focusing on the
sequence of messages that are exchanged, along with their
corresponding occurrence specifications on the lifelines. The
following nodes and edges are typically drawn in a UML sequence

diagram: lifeline, execution specification, message, fragment,
interaction,state invariant, continuation, and destruction occurrence.

28

Sequence Diagram Of Online Exam Panel

29

4.C.USE CASE DIAGRAM
A Use case diagram at its simplest is a representation of a user's
interaction with the system that shows the relationship between the
user and the different use cases in which the user is involved. A use
case diagram can identify the different types of users of a system
and the different use cases and will often be accompanied by other
types of diagrams as well. So only static behaviour is not sufficient
to model a system, rather dynamic behaviour is more important
than static behaviour. In UML there are five diagrams available to
model dynamic nature and a use case diagram is one of them. Now
as we have to discuss that the use case diagram is dynamic in
nature there should be some internal or external factors for making
the interaction. These internal and external agents are known as
actors. So use case diagrams consist of actors, use cases, and their
relationships. The diagram is used to model the system/subsystem
of an application. A single-use case diagram captures a particular
functionality of a system. So to model the entire system numbers of
use case diagrams are used. The purpose of a use case diagram is
to capture the dynamic aspect of a system. But this definition is too
generic to describe the purpose. Because the other four diagrams
(activity, sequence, collaboration, and State chart) are also having
the same purpose. So we will look into some specific purpose that
will distinguish it from the other four diagrams. Use case diagrams
are used to gather the requirements of a system including internal
and external influences. These requirements are mostly design
requirements. So when a system is analysed to gather its
functionalities use cases are prepared and actors are identified.
Now when the initial task is complete use case diagrams are
modelled to present the outside view. So in brief, the purposes of use
case diagrams can be as follows:
➢ Used to gather requirements of a system.
➢ Used to get an outside view of a system.
➢ Identify external and internal factors influencing the system.

➢ Show the interaction among the requirements actors.

30

31

Schema Design
The schema is an abstract structure or outline representing the
logical view of the database as a whole. Defining categories of data
and relationships between those categories, database schema design
makes data much easier to retrieve, consume, manipulate, and
interpret.

32

33

Database tables are essential because they organise and store data in a structured
way, enabling efficient data retrieval, maintaining relationships between data,
ensuring data integrity, and supporting scalability and security in applications like
an Online Exam Panel.

34

Create Test:

import React, { useState, useEffect } from 'react'

import { Card, Col, Container, Form, FormLabel, Row } from 'react-bootstrap'

export default function CreateTest(props) {

const [testForm, setTestForm] = useState({

admin: {

adminId: props.adminId

},

testName: "",

questionList: []

});

const [questions, setQuestions] = useState([]);

const submit = (e) => {

console.log(testForm);

e.preventDefault();

props.saveTest(testForm);

}

useEffect(() => {

setTestForm(prevTestForm => ({ ...prevTestForm, questionList:

questions }));

}, [questions]);

35

const handleFormChange = (index, event) => {

event.preventDefault();

let data = [...questions];

data[index][event.target.name] = event.target.value;

setQuestions(data);

}

const handleFormChoiceChange = (index, event, choiceNo) => {

event.preventDefault();

let data = [...questions];

data[index]["choicesList"][choiceNo] = { choiceDesc:

event.target.value, ans: 0 };

setQuestions(data);

}

const handleAnswerChange = (index, event) => {

event.preventDefault();

let data = [...questions];

for (let i = 0; i < 4; i++) {

data[index]["choicesList"][i] = {

...(data[index]["choicesList"][i]), ans: 0 };

}

data[index]["choicesList"][event.target.value - 1] = {

...(data[index]["choicesList"][event.target.value - 1]), ans: 1 };

setQuestions(data);

}

36

const addQuestions = (e) => {

e.preventDefault();

let newQues = {

quesDesc: "",

choicesList: [

{

choiceDesc: "",

ans: 0

},

{

choiceDesc: "",

ans: 0

},

{

choiceDesc: "",

ans: 0

},

{

choiceDesc: "",

ans: 0

}

]

}

setQuestions([...questions, newQues]);

}

37

const removeFields = (e, index) => {

e.preventDefault();

let data = [...questions];

data.splice(index, 1)

setQuestions(data)

}

const openDashboard = (e) => {

props.openAdminDashboard();

e.preventDefault();

}

return (

<Container className='my-5' style={{backgroundColor: 'rgba(255, 255,

255, 0.9)', overflowY: "scroll", maxHeight:"70vh"}}>

<Form onSubmit={submit}>

<Card className='my-3'>

<Card.Body>

<FormLabel htmlFor='testName'><h4>Test

Name:</h4></FormLabel>

<Form.Control

type="text"

id="testName"

value={testForm.testName}

onChange={(e) => setTestForm({ ...testForm,

testName: e.target.value })}

placeholder="Give a name to your test.."

/>

38

</Card.Body>

</Card>

{questions.map((input, index) => {

return (<div key={index}>

<Card className='m-1 p-2'>

<Card.Header>

<Row className="justify-content-center">

<Col md="auto">

<p>{index + 1}.</p>

</Col>

<Col>

<FormLabel

htmlFor='quesDesc'></FormLabel>

<Form.Control

type="text"

id="quesDesc"

name="quesDesc"

value={input.quesDesc}

onChange={event =>

handleFormChange(index, event)}

placeholder="Enter question

text"

/></Col>

<Col md="auto">

<button className="float-right mb-2

btn-sm btn-danger" onClick={(e) => removeFields(e,

index)}>Delete</button></Col>

</Row>

39

</Card.Header>

<Card.Body>

<Row>

<Col>

<Form.Control

type="text"

id="choice1"

name="choice1"

value={input.choicesList[0].choiceDesc}

onChange={event =>

handleFormChoiceChange(index, event, 0)}

placeholder="Option 1 text"

/>

</Col>

<Col>

<Form.Control

type="text"

id="choice2"

name="choice2"

value={input.choicesList[1].choiceDesc}

onChange={event =>

handleFormChoiceChange(index, event, 1)}

placeholder="Option 2 text"

/>

</Col>

</Row>

40

<Row>

<Col>

<Form.Control

type="text"

id="choice3"

name="choice3"

value={input.choicesList[2].choiceDesc}

onChange={event =>

handleFormChoiceChange(index, event, 2)}

placeholder="Option 3 text"

/>

</Col>

<Col>

<Form.Control

type="text"

id="choice4"

name="choice4"

value={input.choicesList[3].choiceDesc}

onChange={event =>

handleFormChoiceChange(index, event, 3)}

placeholder="Option 4 text"

/>

</Col>

</Row>

</Card.Body>

<Card.Footer>

41

<Row>

<Col>

<Form.Select className='bg-light'

onChange={event => handleAnswerChange(index, event)}>

<option>Select Answer</option>

<option value="1">1</option>

<option value="2">2</option>

<option value="3">3</option>

<option value="4">4</option>

</Form.Select>

</Col>

</Row>

</Card.Footer>

</Card>

</div>

);

})}

<Row className='py-2 text-center'>

<Col>

<button className="btn btn-primary"

onClick={addQuestions}>Add More Question</button>

</Col>

</Row>

<Row className='py-2 text-center'>

<Col>

<button className="btn btn-primary" type='submit'

onClick={submit}>Save Test</button>

</Col>

42

<Col>

<button className="btn btn-danger"

onClick={openDashboard}>Cancel</button>

</Col>

</Row>

</Form>

</Container>)}

43

Available Test :

import React from 'react';

import TestListItem from '../Test/TestListItem';

import { Container } from 'react-bootstrap';

export default function AvailableTest(props) {

console.log(props.studentTestList);

const testList = Object.keys(props.studentTestList).map((key) =>

props.studentTestList[key]);

console.log(testList)

const backToDashboard = (e) => {

e.preventDefault();

props.openDashboard();

}

return (

<Container className='my-5 bg-light pt-2' style={{maxWidth: "100vh",

overflowY: "scroll", maxHeight:"60vh"}}>

<button type="button" className="close" onClick={backToDashboard}

aria-label="Close">

×

</button>

<h4 className='text-center'>Available Tests</h4>

<Container className="bg-light p-2">

44

{testList.map((test) => {

console.log(test.testId);

return (

<TestListItem key={test.testId} test={test} />

)

})}

</Container>

</Container>

)

}

Students Profile :

import React, { useState } from 'react';

import { Card, Button, Container, Row, Col } from 'react-bootstrap';

import Form from 'react-bootstrap/Form';

export default function StudentProfile(props) {

let formData = { ...props.student };

const [student, setStudent] = useState({ ...props.student });

const [isFormDisabled, setIsFormDisabled] = useState(true)

const editForm = () => {

setIsFormDisabled(false);

}

45

const resetForm = () => {

setStudent({ ...formData });

setIsFormDisabled(true);

}

const saveDetails = (e) => {

e.preventDefault();

props.saveStudentDetails(student);

setIsFormDisabled(true);

}

const backToDashboard = (e) => {

e.preventDefault();

props.openDashboard();

}

return (

<Container className='sm my-5'>

<Card className='bg-light'>

<Card.Header className="lg">

User details

<button type="button" className="close"

onClick={backToDashboard} aria-label="Close">

×

</button>

</Card.Header>

46

<Card.Body className='p-3'>

<Row className='mx-5 mb-3'>

<Col>

<Form.Label htmlFor="inputName">Full

Name</Form.Label>

<Form.Control

type="text"

id="inputName"

value={student.studentName}

onChange={(e) => setStudent({ ...student,

studentName: e.target.value })}

aria-describedby="Student Name"

disabled={isFormDisabled ? true : false}

/>

</Col>

<Col>

<Form.Label htmlFor="inputEmail">Email

Address</Form.Label>

<Form.Control

type="text"

id="inputEmail"

value={student.email}

onChange={(e) => setStudent({ ...student,

email: e.target.value })}

aria-describedby="Email Address"

disabled={true}

/>

</Col>

</Row>

47

<Row className='mx-5 mb-3'>

<Col>

<Form.Label htmlFor="inputMobno">Mobile

No.</Form.Label>

<Form.Control

type="text"

id="inputMobno"

value={student.mobNo}

onChange={(e) => setStudent({ ...student,

mobNo: e.target.value })}

aria-describedby="Mobile No"

disabled={isFormDisabled ? true : false}

/>

</Col>

<Col>

<Form.Label

htmlFor="inputPass">Password</Form.Label>

<Form.Control

type="password"

id="inputPass"

value={student.pass}

onChange={(e) => setStudent({ ...student,

pass: e.target.value })}

aria-describedby="Mobile No"

disabled={isFormDisabled ? true : false}

/>

</Col>

</Row>

<Row className='mx-5 mb-3'>

48

<Col>

<Form.Label

htmlFor="inputCity">City</Form.Label>

<Form.Control

type="text"

id="inputCity"

value={student.address.city}

onChange={(e) => setStudent({ ...student,

address: { ...student.address, city: e.target.value } })}

aria-describedby="Address City"

disabled={isFormDisabled ? true : false}

/>

</Col>

<Col>

<Form.Label

htmlFor="inputState">State</Form.Label>

<Form.Control

type="text"

id="inputState"

value={student.address.state}

onChange={(e) => setStudent({ ...student,

address: { ...student.address, state: e.target.value } })}

aria-describedby="Address State"

disabled={isFormDisabled ? true : false}

/>

</Col>

</Row>

<Row className='mx-5 mb-3'>

<Col>

49

<Form.Label

htmlFor="inputCountry">Country</Form.Label>

<Form.Control

type="text"

id="inputCountry"

value={student.address.country}

onChange={(e) => setStudent({ ...student,

address: { ...student.address, country: e.target.value } })}

aria-describedby="Address Country"

disabled={isFormDisabled ? true : false}

/>

</Col>

<Col>

<Form.Label

htmlFor="inputZip">Zipcode</Form.Label>

<Form.Control

type="text"

id="inputZip"

value={student.address.zip}

onChange={(e) => setStudent({ ...student,

address: { ...student.address, zip: e.target.value } })}

aria-describedby="Address Zipcode"

disabled={isFormDisabled ? true : false}

/>

</Col>

</Row>

</Card.Body>

<Row className='mx-5 mb-5 text-center'>

{isFormDisabled ? <Col>

50

<Button variant="primary" size="lg"

onClick={editForm}>Edit</Button>

</Col> : <><Col>

<Button variant="primary" size="lg"

onClick={saveDetails}>Save</Button>

</Col><Col>

<Button variant="primary" size="lg"

onClick={resetForm}>Cancel</Button>

</Col></>}

</Row>

</Card>

</Container>

)

}

Track Record :

import React from 'react'

export default function TrackRecords() {

return (

<div>TrackRecords</div>

)

}

Test English :

import React, { useState, useEffect } from 'react';

import { Container, Row, Col, Button, Form, Badge, Card } from

'react-bootstrap';

51

import { useNavigate } from 'react-router-dom';

const questions = [

{

id: 'q1',

question: 'Choose the correct form of the verb: "She ____ to the store

yesterday."',

options: ['goes', 'went', 'gone', 'going']

},

{

id: 'q2',

question: 'Select the correctly punctuated sentence:',

options: ['Its raining cats and dogs.', 'It\'s raining cats and dogs.',

'It raining cats and dogs.', 'Its raining, cats and dogs.']

},

{

id: 'q3',

question: 'What is the synonym of "ubiquitous"?',

options: ['rare', 'present everywhere', 'unique', 'distant']

},

{

id: 'q4',

question: 'Identify the grammatical error in the sentence: "He don\'t

like to play basketball."',

options: ['don\'t should be doesn\'t', 'play should be plays',

'basketball should be basketballs', 'no error']

},

{

52

id: 'q5',

question: 'Fill in the blank with the correct preposition: "She is keen

____ learning new languages."',

options: ['in', 'on', 'at', 'to']

}

];

const TestE = () => {

const [currentQuestionIndex, setCurrentQuestionIndex] = useState(0);

const [selectedOption, setSelectedOption] = useState(null);

const [answers, setAnswers] =

useState(Array(questions.length).fill(null));

const [isMarkedForReview, setIsMarkedForReview] =

useState(Array(questions.length).fill(false));

const [timer, setTimer] = useState(10719); // Time in seconds (2 hours 58

minutes 39 seconds)

const navigate = useNavigate();

// Timer function

useEffect(() => {

const intervalId = setInterval(() => {

setTimer(prevTime => {

if (prevTime <= 0) {

clearInterval(intervalId);

return 0;

}

return prevTime - 1;

});

53

}, 1000);

return () => clearInterval(intervalId);

}, []);

const handleOptionChange = (e) => {

setSelectedOption(e.target.id);

};

const handleMarkForReview = () => {

const updatedMarks = [...isMarkedForReview];

updatedMarks[currentQuestionIndex] =

!isMarkedForReview[currentQuestionIndex];

setIsMarkedForReview(updatedMarks);

alert(isMarkedForReview[currentQuestionIndex] ? 'Question unmarked for

review.' : 'Question marked for review.');

};

const handleClearResponse = () => {

setSelectedOption(null);

alert('Response cleared.');

};

const handleSaveAndNext = () => {

const updatedAnswers = [...answers];

if (selectedOption !== null) {

updatedAnswers[currentQuestionIndex] = selectedOption;

54

alert('Response saved.');

} else {

// If no response is selected, mark as not answered

if (updatedAnswers[currentQuestionIndex] === null) {

alert('Question not answered.');

}

}

setAnswers(updatedAnswers);

// Move to the next question

if (currentQuestionIndex < questions.length - 1) {

setCurrentQuestionIndex(currentQuestionIndex + 1);

setSelectedOption(updatedAnswers[currentQuestionIndex + 1]);

} else {

alert('You have completed the test.');

navigate('/test/summary'); // Navigate to a summary page or wherever

you want

}

};

const formatTime = (seconds) => {

const hours = Math.floor(seconds / 3600);

const minutes = Math.floor((seconds % 3600) / 60);

const secs = seconds % 60;

return `${hours} Hours ${minutes} Minutes ${secs} Seconds`;

};

55

const currentQuestion = questions[currentQuestionIndex];

const getButtonVariant = (index) => {

if (answers[index] !== null) {

return isMarkedForReview[index] ? 'warning' : 'success'; // Answered

and marked for review vs. answered

} else {

return isMarkedForReview[index] ? 'info' : 'light'; // Not answered

but marked vs. not answered

}

};

return (

<Container className="my-4">

<Card>

<Card.Header>

<h5>English Test</h5>

</Card.Header>

<Card.Body>

{/* Question Section */}

<Row className="mb-4">

<Col>

<h5>Question No. {currentQuestionIndex + 1}</h5>

<p>{currentQuestion.question}</p>

<Form>

{currentQuestion.options.map((option, index) => (

56

<Form.Check

key={index}

type="radio"

label={option}

name={`question${currentQuestionIndex}`}

id={`option${index}`}

checked={selectedOption === `option${index}`}

onChange={handleOptionChange}

/>

))}

</Form>

</Col>

</Row>

{/* Action Buttons */}

<Row className="mb-4">

<Col>

<Button

variant={isMarkedForReview[currentQuestionIndex] ? "warning"

: "primary"}

className="me-2"

onClick={handleMarkForReview}

>

{isMarkedForReview[currentQuestionIndex] ? "Unmark for Review" : "Mark

for Review"}

</Button>

57

<Button variant="danger" className="me-2"

onClick={handleClearResponse}>Clear Response</Button>

<Button variant="success" onClick={handleSaveAndNext}>Save &

Next</Button>

</Col>

</Row>

{/* Timer and Question Palette */}

<Row>

<Col md={6} className="mb-4">

<div className="border p-3">

<h6>Time Remaining</h6>

<div className="text-center">

<h5>{formatTime(timer)}</h5>

</div>

</div>

</Col>

<Col md={6} className="mb-4">

<div className="border p-3">

<h6>Question Palette</h6>

<div className="d-flex flex-wrap">

{questions.map((_, index) => (

<Button

key={index}

variant={getButtonVariant(index)}

className="m-1"

onClick={() => {

58

setCurrentQuestionIndex(index);

setSelectedOption(answers[index]);

}}

>

{index + 1}

</Button>

))}

</div>

<div className="mt-3">

<Badge pill bg="success" className="me-2">Answered</Badge>

<Badge pill bg="danger" className="me-2">Not

Answered</Badge>

<Badge pill bg="warning" className="me-2">Marked</Badge>

<Badge pill bg="info" className="me-2">Answered & Marked

for Review</Badge>

</div>

</div>

</Col>

</Row>

</Card.Body>

</Card>

</Container>

);

};

export default TestE;

59

Test Math :

import React, { useState, useEffect } from 'react';

import { Container, Row, Col, Button, Form, Badge, Card } from

'react-bootstrap';

import { useNavigate } from 'react-router-dom';

const questions = [

{

id: 'q1',

question: 'What is the result of 5 + 3?',

options: ['6', '7', '8', '9']

},

{

id: 'q2',

question: 'Solve for x: 2x - 4 = 10',

options: ['x = 4', 'x = 5', 'x = 6', 'x = 7']

},

{

id: 'q3',

question: 'What is the area of a rectangle with length 8 cm and width 5

cm?',

options: ['30 cm²', '35 cm²', '40 cm²', '45 cm²']

},

{

id: 'q4',

question: 'Find the square root of 144.',

options: ['10', '12', '14', '16']

},

60

{

id: 'q5',

question: 'What is the value of 7 × (6 - 2)?',

options: ['20', '24', '28', '32']

}

];

const TestM = () => {

const [currentQuestionIndex, setCurrentQuestionIndex] = useState(0);

const [selectedOption, setSelectedOption] = useState(null);

const [answers, setAnswers] =

useState(Array(questions.length).fill(null));

const [isMarkedForReview, setIsMarkedForReview] =

useState(Array(questions.length).fill(false));

const [timer, setTimer] = useState(10719); // Time in seconds (2 hours 58

minutes 39 seconds)

const navigate = useNavigate();

// Timer function

useEffect(() => {

const intervalId = setInterval(() => {

setTimer(prevTime => {

if (prevTime <= 0) {

clearInterval(intervalId);

return 0;

}

return prevTime - 1;

61

});

}, 1000);

return () => clearInterval(intervalId);

}, []);

const handleOptionChange = (e) => {

setSelectedOption(e.target.id);

};

const handleMarkForReview = () => {

const updatedMarks = [...isMarkedForReview];

updatedMarks[currentQuestionIndex] =

!isMarkedForReview[currentQuestionIndex];

setIsMarkedForReview(updatedMarks);

alert(isMarkedForReview[currentQuestionIndex] ? 'Question unmarked for

review.' : 'Question marked for review.');

};

const handleClearResponse = () => {

setSelectedOption(null);

alert('Response cleared.');

};

const handleSaveAndNext = () => {

const updatedAnswers = [...answers];

62

if (selectedOption !== null) {

updatedAnswers[currentQuestionIndex] = selectedOption;

alert('Response saved.');

} else {

// If no response is selected, mark as not answered

if (updatedAnswers[currentQuestionIndex] === null) {

alert('Question not answered.');

}

}

setAnswers(updatedAnswers);

// Move to the next question

if (currentQuestionIndex < questions.length - 1) {

setCurrentQuestionIndex(currentQuestionIndex + 1);

setSelectedOption(updatedAnswers[currentQuestionIndex + 1]);

} else {

alert('You have completed the test.');

navigate('/test/summary'); // Navigate to a summary page or wherever

you want

}

};

const formatTime = (seconds) => {

const hours = Math.floor(seconds / 3600);

const minutes = Math.floor((seconds % 3600) / 60);

const secs = seconds % 60;

63

return `${hours} Hours ${minutes} Minutes ${secs} Seconds`;

};

const currentQuestion = questions[currentQuestionIndex];

const getButtonVariant = (index) => {

if (answers[index] !== null) {

return isMarkedForReview[index] ? 'warning' : 'success'; // Answered and

marked for review vs. answered

} else {

return isMarkedForReview[index] ? 'info' : 'light'; // Not answered

but marked vs. not answered

}

};

return (

<Container className="my-4">

<Card>

<Card.Header>

<h5>Math Test</h5>

</Card.Header>

<Card.Body>

{/* Question Section */}

<Row className="mb-4">

<Col>

<h5>Question No. {currentQuestionIndex + 1}</h5>

64

<p>{currentQuestion.question}</p>

<Form>

{currentQuestion.options.map((option, index) => (

<Form.Check

key={index}

type="radio"

label={option}

name={`question${currentQuestionIndex}`}

id={`option${index}`}

checked={selectedOption === `option${index}`}

onChange={handleOptionChange}

/>

))}

</Form>

</Col>

</Row>

{/* Action Buttons */}

<Row className="mb-4">

<Col>

<Button

variant={isMarkedForReview[currentQuestionIndex] ? "warning"

: "primary"}

className="me-2"

onClick={handleMarkForReview}

>

65

{isMarkedForReview[currentQuestionIndex] ? "Unmark for

Review" : "Mark for Review"}

</Button>

<Button variant="danger" className="me-2"

onClick={handleClearResponse}>Clear Response</Button>

<Button variant="success" onClick={handleSaveAndNext}>Save &

Next</Button>

</Col>

</Row>

{/* Timer and Question Palette */}

<Row>

<Col md={6} className="mb-4">

<div className="border p-3">

<h6>Time Remaining</h6>

<div className="text-center">

<h5>{formatTime(timer)}</h5>

</div>

</div>

</Col>

<Col md={6} className="mb-4">

<div className="border p-3">

<h6>Question Palette</h6>

<div className="d-flex flex-wrap">

{questions.map((_, index) => (

<Button

key={index}

66

variant={getButtonVariant(index)}

className="m-1"

onClick={() => {

setCurrentQuestionIndex(index);

setSelectedOption(answers[index]);

}}

>

{index + 1}

</Button>

))}

</div>

<div className="mt-3">

<Badge pill bg="success" className="me-2">Answered</Badge>

<Badge pill bg="danger" className="me-2">Not

Answered</Badge>

<Badge pill bg="warning" className="me-2">Marked</Badge>

<Badge pill bg="info" className="me-2">Answered & Marked

for Review</Badge>

</div>

</div>

</Col>

</Row>

</Card.Body>

</Card>

</Container>

);

};

67

export default TestM;

Test List :

import React from 'react'

import { Button, Card, Row, Col } from 'react-bootstrap'

export default function TestListItem(props) {

return (

<Card className='my-3 rounded-end'>

<Card.Body className='align-middle'>

<Row>

<Col>

<p>{props.test.testName}</p>

</Col>

<Col>

<Button className='float-right' variant='primary'>

Register</Button>

</Col>

</Row>

</Card.Body>

</Card>

)

}

68

Admin Dashboard :

import React from 'react';

import { Button, Container, Row, Card } from 'react-bootstrap';

import createTest from '../Resources/create-test.png';

import testlist from '../Resources/list-of-test.png';

import registration from '../Resources/registration.png';

import api from '../service/api'; // Ensure api.js is correctly

imported

export default function AdminDashboard(props) {

const styleImg = {

width: "18rem",

height: "18rem",

padding: "3rem"

};

const createNewTest = async (e) => {

e.preventDefault();

try {

const response = await api.post('/create-test', {

testName: 'Sample Test',

questions: [

{ question: 'Sample Question 1', options: ['A', 'B', 'C', 'D'],

correctOption: 0 },

],

});

console.log(response.data);

69

} catch (error) {

console.error('Error creating test:', error);

}

}

const createdTests = async () => {

try {

const response = await api.get('/created-tests');

console.log(response.data);

} catch (error) {

console.error('Error fetching created tests:', error);

}

}

const registeredStudents = async () => {

try {

const response = await api.get('/registered-students');

console.log(response.data);

} catch (error) {

console.error('Error fetching registered students:', error);

}

}

return (

<Container className='my-5 px-5'>

<Row className='mx-1'>

<Card className='shadow-lg text-center mx-4' style={{ width: '18rem'

}}>

<Card.Img variant="top" src={createTest} style={styleImg} />
70

<Card.Body>

<Card.Title>Create Test</Card.Title>

<Card.Text>

Create a new MCQ test for your students.

</Card.Text>

<Button variant="primary" onClick={createNewTest}>Create

Test</Button>

</Card.Body>

</Card>

<Card className='shadow-lg text-center mx-4' style={{ width: '18rem'

}}>

<Card.Img variant="top" src={testlist} style={styleImg} />

<Card.Body>

<Card.Title>Created Tests</Card.Title>

<Card.Text>

View or edit tests that you have created.

</Card.Text>

<Button variant="primary" onClick={createdTests}>Available

Tests</Button>

</Card.Body>

</Card>

<Card className='shadow-lg text-center mx-4' style={{ width: '18rem'

}}>

<Card.Img variant="top" src={registration} style={styleImg} />

<Card.Body>

<Card.Title>Registered Students</Card.Title>

71

<Card.Text>

List of students registered for tests.

</Card.Text>

<Button variant="secondary"

onClick={registeredStudents}>Unavailable</Button>

</Card.Body>

</Card>

</Row>

</Container>

);

}

Admin Login :

import React, { useState } from 'react';

import api from '../service/api'; // Ensure api.js is correctly

imported

export default function AdminLogin(props) {

const [adminName, setAdminName] = useState("");

const [password, setPassword] = useState("");

const [error, setError] = useState("");

const submit = async (e) => {

e.preventDefault();

if (!adminName || !password) {

setError("Please fill in all fields");

} else {

try {

72

const response = await api.post('/login', { adminName,

password });

if (response.data.success) {

props.loginAdmin(adminName, password);

setAdminName("");

setPassword("");

setError("");

} else {

setError("Invalid credentials");

}

} catch (error) {

setError("An error occurred");

}

}

}

return (

<div className="container">

<div className="card o-hidden border-0 shadow-lg my-5" style={{

backgroundColor: 'rgba(255, 255, 255, 0.8)' }}>

<div className="card-body p-0">

<div className="row">

<div className="col-lg-7 mx-auto" align="center">

<div className="p-5">

<div className="text-center">

<h1 className="h4 text-gray-900

mb-4">Admin Login</h1>

</div>

73

{error && <p style={{ color: 'red'

}}>{error}</p>}

<form className="user" onSubmit={submit}

method="post" autoComplete="off">

<div className="form-group">

<input type="text" value={adminName}

onChange={(e) => setAdminName(e.target.value)} className="form-control

form-control-user" id="adminName"

placeholder="Admin Name" />

</div>

<div className="form-group">

<input type="password"

value={password} onChange={(e) => setPassword(e.target.value)}

className="form-control form-control-user"

id="password"

placeholder="Password" />

</div>

<div className="form-group">

<button type="submit" className="btn

btn-primary btn-user btn-block">Login</button>

</div>

</form>

</div>

</div>

</div>

</div>

</div>

</div>

)

}

74

Header :

import React from 'react';

import PropTypes from 'prop-types';

import { Link } from "react-router-dom";

import { Row, Col } from 'react-bootstrap';

export default function Header(props) {

const logout = (e) => {

e.preventDefault();

props.logout();

}

return (

<nav className="navbar navbar-expand-lg navbar-dark bg-dark">

<Link className="navbar-brand"

to={props.isLoggedIn ? (props.isAdmin ? "/admin-dashboard" :

"/student-dashboard") : "/"}>

<h3>Online Exam Portal</h3>

</Link>

<ul className="navbar-nav mr-auto">

{props.isLoggedIn ?

<Row className='vertical-center'>

<Col className='text-center pt-1 text-white text-nowrap'>

{props.isAdmin ? "Admin" : props.studentName}

75

</Col>

<Col>

<form className="form-inline my-2 my-lg-0" onSubmit={logout}>

<button className="btn btn-primary my-2 my-sm-0"

type="submit">

Logout

</button>

</form>

</Col>

</Row> : ""}

</nav>

)

}

Header.defaultProps = {

title: "Your Title Here",

searchBar: true

}

Header.propTypes = {

title: PropTypes.string,

searchBar: PropTypes.bool.isRequired

}

Main :

import React from 'react';

import { Card, Container, Row, Col, Button } from 'react-bootstrap';

import { Link } from 'react-router-dom';

76

export const Main = () => {

return (

<Container className='text-center my-5' >

<Card style={{backgroundColor: 'rgba(255, 255, 255, 0.7)'}}>

<Card.Header className='text-center'style={{backgroundColor:

'rgba(255, 255, 255, 0.9)'}}>

<h2>Welcome to the Exam Portal!</h2>

</Card.Header>

<Card.Body className='text-center' style={{backgroundColor:

'rgba(255, 255, 255, 0.6)'}}>

<Row className='p-5'>

<Col></Col>

<Col>

<Link to="/student-login"><Button

variant="primary" size="lg">Student Login</Button></Link>

</Col>

<Col>

<Link to="/admin-login"><Button

variant="primary" size="lg">Admin Login</Button></Link>

</Col>

<Col></Col>

</Row>

<Row className='text-center'>

<Col>

<h5 className="text-center">New Student?<Link

to="/register-student"> Register now.</Link></h5>

77

</Col>

</Row>

</Card.Body>

</Card>

</Container>

)

}

Register Students :

import { Link } from "react-router-dom";

import react , {useState} from "react";

export default function RegisterStudent(props) {

const [student, setStudent] = useState({

studentName: "",

email: "",

mobNo: null,

pass: "",

address: {

city: "",

state: "",

country: "",

zip: null

}

});

const submit = (e) => {

78

console.log(student);

props.registerStudent(student);

setStudent({studentName: "",

email: "",

mobNo: null,

pass: "",

address: {

city: "",

state: "",

country: "",

zip: null

}});

e.preventDefault();

}

return (

<div className="container">

<div className="card o-hidden border-0 shadow-lg my-5"

style={{backgroundColor: 'rgba(255, 255, 255, 0.9)'}}>

<div className="card-body p-0">

<div className="row">

<div className="col-lg-5 d-none d-lg-block

bg-register-image" ></div>

<div className="col-lg-7" >

<div className="p-5" >

<div className="text-center">

<h1 className="h4 text-gray-900

mb-4">Student Registration</h1>

79

</div>

<form className="user" onSubmit={submit} method="post"

autoComplete="off">

<div className="form-group">

<input

type="text"

value={student.studentName}

onChange={(e) => setStudent({

...student, studentName: e.target.value })}

className="form-control

form-control-user"

id="studentName"

placeholder="Student Name" />

</div>

<div className="form-group">

<input

type="email"

value={student.email}

onChange={(e) => setStudent({

...student, email: e.target.value })}

className="form-control

form-control-user"

id="exampleInputEmail"

placeholder="Email Address" />

</div>

<div className="form-group row">

<div className="col-sm-6 mb-3

mb-sm-0">

<input

80

type="text"

value={student.mobNo}

onChange={(e) => setStudent({

...student, mobNo: e.target.value })}

className="form-control

form-control-user"

id="mobileNo"

placeholder="Mobile no." />

</div>

<div className="col-sm-6">

<input

type="password"

value={student.pass}

onChange={(e) => setStudent({

...student, pass: e.target.value })}

className="form-control

form-control-user"

id="password"

placeholder="Password" />

</div>

</div>

<div className="form-group row">

<div className="col-sm-6 mb-3

mb-sm-0">

<input

type="text"

value={student.address.city}

onChange={(e) => setStudent({

...student, address: { ...student.address, city: e.target.value } })}

81

className="form-control

form-control-user"

id="city"

placeholder="City" />

</div>

<div className="col-sm-6">

<input

type="text"

value={student.address.state}

onChange={(e) => setStudent({

...student, address: { ...student.address, state: e.target.value } })}

className="form-control

form-control-user"

id="state"

placeholder="State" />

</div>

</div>

<div className="form-group row">

<div className="col-sm-6 mb-3

mb-sm-0">

<input

type="text"

value={student.address.country}

onChange={(e) => setStudent({

...student, address: { ...student.address, country: e.target.value } })}

className="form-control

form-control-user"

id="country"

82

placeholder="Country" />

</div>

<div className="col-sm-6">

<input

type="text"

value={student.address.zip}

onChange={(e) => setStudent({

...student, address: { ...student.address, zip: e.target.value } })}

className="form-control

form-control-user"

id="zip"

placeholder="Zipcode" />

</div>

</div>

<div className="form-group row">

<div className="col-sm-6 mb-3

mb-sm-0">

<button type="submit"

className="btn btn-primary btn-user btn-block">Register</button>

</div>

<div className="col-sm-6 mb-3

mb-sm-0">

<button type="reset" className="btn btn-primary btn-user

btn-block">Reset</button>

</div>

</div>

</form>

<hr />

<div className="text-center">

83

<Link className="medium"

to="/student-login">Already have an account? Login!</Link>

</div>

</div>

</div>

</div>

</div>

</div>

</div>

)

}Student Dashboard

Student Dashboard :

import React from 'react';

import Card from 'react-bootstrap/Card';

import { Button, Container, Row } from 'react-bootstrap';

import userprofie from '../Resources/user-profile.png';

import testlist from '../Resources/list-of-test.png';

import performance from '../Resources/performance.png';

import api from '../service/api'; // Import the API service

export default function StudentDashboard(props) {

const styleImg = {

width: "18rem",

84

height: "18rem",

padding: "3rem"

};

const openProfile = async (e) => {

e.preventDefault();

try {

const response = await api.get('/profile'); // Replace with actual

endpoint

if (response.data.success) {

// Handle the profile data

console.log(response.data.profile);

} else {

console.error('Failed to fetch profile');

}

} catch (error) {

console.error('Error fetching profile:', error);

}

}

const availableTest = async (e) => {

e.preventDefault();

try {

const response = await api.get('/available-tests'); // Replace with

actual endpoint

if (response.data.success) {

// Handle the available tests data

85

console.log(response.data.tests);

} else {

console.error('Failed to fetch available tests');

}

} catch (error) {

console.error('Error fetching available tests:', error);

}

}

const trackRecord = (e) => {

e.preventDefault();

// Handle track record functionality here

}

return (

<>

<Container className='my-5 px-5'>

<Row className='mx-1'>

<Card className='shadow-lg text-center mx-4' style={{ width: '18rem'

}}>

<Card.Img variant="top" src={userprofie} style={styleImg} />

<Card.Body>

<Card.Title>Your Profile</Card.Title>

<Card.Text>

View or edit details in your student profile.

</Card.Text>

<Button variant="primary" onClick={openProfile}>Open

Profile</Button>

86

</Card.Body>

</Card>

<Card className='shadow-lg text-center mx-4' style={{ width: '18rem' }}>

<Card.Img variant="top" src={testlist} style={styleImg} />

<Card.Body>

<Card.Title>View Available Tests</Card.Title>

<Card.Text>

Check out the latest list of available tests for you.

</Card.Text>

<Button variant="primary" onClick={availableTest}>Available

Tests</Button>

</Card.Body>

</Card>

<Card className='shadow-lg text-center mx-4' style={{ width: '18rem'

}}>

<Card.Img variant="top" src={performance} style={styleImg} />

<Card.Body>

<Card.Title>Track Records</Card.Title>

<Card.Text>

Under Maintenance. Will be available soon.

</Card.Text>

<Button variant="secondary"

onClick={trackRecord}>Unavailable</Button>

</Card.Body>

</Card>

87

</Row>

</Container>

</>

)

}

Student Login :

import React, { useState } from 'react';

import api from '../service/api'; // Ensure the path is correct

export default function StudentLogin(props) {

const [email, setEmail] = useState("");

const [password, setPassword] = useState("");

const submit = async (e) => {

e.preventDefault();

if (!email || !password) {

} else {

try {

const response = await api.post('/login', { email, password

});

if (response.data.success) {

props.loginStudent(response.data.student); // Assuming

this updates the parent component state

} else {

console.error('Login failed:', response.data.message);

}

} catch (error) {

console.error('Error during login:', error);

88

}

setEmail("");

setPassword("");

}

};

return (

<div className="container">

<div className="card o-hidden border-0 shadow-lg my-5" style={{

backgroundColor: 'rgba(255, 255, 255, 0.8)' }}>

<div className="card-body p-0">

<div className="row">

<div className="col-lg-7 mx-auto" align="center">

<div className="p-5">

<div className="text-center">

<h1 className="h4 text-gray-900

mb-4">Student Login</h1>

</div>

<form className="user" onSubmit={submit}

method="post" autoComplete="off">

<div className="form-group">

<input type="email" value={email}

onChange={(e) => setEmail(e.target.value)} className="form-control

form-control-user" id="email"

placeholder="Email Address" />

</div>

<div className="form-group">

<input type="password"

value={password} onChange={(e) => setPassword(e.target.value)}

className="form-control form-control-user"

89

id="password"

placeholder="Password" />

</div>

<div className="form-group">

<button type="submit" className="btn

btn-primary btn-user btn-block">Login</button>

</div>

</form>

<hr />

<div className="text-center">

<p className="medium">New Student? Register now.</p>

</div>

</div>

</div>

</div>

</div>

</div>

</div>)}

90

// View : Students —--Code

import React from 'react';

import { Container, Row, Card, Button } from 'react-bootstrap';

import { useParams } from 'react-router-dom';

export default function ViewStudent() {

const { studentId } = useParams(); // Get the student ID from the URL

// Dummy student data for demonstration

const student = {

id: studentId,

name: 'John Doe',

email: 'johndoe@example.com',

registrationDate: '2023-01-15',

};

return (

<Container className='my-5'>

<Row className='justify-content-center'>

<Card className='shadow-lg text-center' style={{ width: '30rem' }}>

<Card.Body>

<Card.Title>Student Details</Card.Title>

<Card.Text>ID: {student.id}</Card.Text>

<Card.Text>Name: {student.name}</Card.Text>

<Card.Text>Email: {student.email}</Card.Text>

<Card.Text>Registration Date:

{student.registrationDate}</Card.Text>

91

<Button variant="primary" onClick={() =>

window.history.back()}>Back</Button>

</Card.Body>

</Card>

</Row>

</Container>

);

}

App.CSS FILE :

.App { text-align: center;

}

.App-logo {

height: 40vmin;

pointer-events: none;

}

.bg-register-image {

background: url(./Resources/register-img.jpg);

background-position: center;

background-size: cover;

}

.myImg {

z-index: -5;

background-image: url(./Resources/bg-img.jpg);

height: 91vh;
92

background-size: cover;

display: flex;

align-items: center;

}

.App-header {

background-color: #282c34;

min-height: 100vh;

display: flex;

flex-direction: column;

align-items: center;

justify-content: center;

font-size: calc(10px + 2vmin);

color: white;

}

.App-link {

color: #61dafb;}

App.Js:

import './App.css';

import { Main } from './Components/Main';

import {

Routes,

Route,

useNavigate

} from "react-router-dom";

93

import StudentLogin from './Components/StudentLogin';

import AdminLogin from './Components/AdminLogin';

import RegisterStudent from './Components/RegisterStudent';

import Header from './Components/Header';

import StudentDashboard from './Components/StudentDashboard';

import AdminDashboard from './Components/AdminDashboard';

import { useState } from 'react';

import StudentProfile from './Components/StudentDashboard/StudentProfile';

import AvailableTest from './Components/StudentDashboard/AvailableTest';

import TrackRecords from './Components/StudentDashboard/TrackRecords';

import CreateTest from './Components/AdminDashboard/CreateTest';

function App() {

const navigate = useNavigate();

const [isLoggedIn, setIsLoggedIn] = useState(false);

const [isAdmin, setisAdmin] = useState(false);

const [studentId, setstudentId] = useState(null);

let [student, setStudent] = useState({

studentName: "",

email: "",

mobNo: null,

pass: "",

address: {

city: "",

state: "",

94

country: "",

zip: null

}

});

let [studentTestList, setstudentTestList] = useState(null);

const [adminId, setadminId] = useState(null);

const [studentName, setstudentName] = useState(null);

const logout = () => {

setIsLoggedIn(false);

setisAdmin(false);

navigate("/");

}

const loginStudent = (email, pass) => {

const requestOptions = {

method: 'POST',

headers: { 'Content-Type': 'application/json' },

body: JSON.stringify({

email: email,

pass: pass

})

};

95

fetch('/portal/login', requestOptions)

.then(response => response.json())

.then(data => {

if (data.studentId) {

setIsLoggedIn(true);

setisAdmin(false);

setstudentId(data.studentId);

setstudentName(data.studentName);

navigate("/student-dashboard");

} else {

setIsLoggedIn(false);

setisAdmin(false);

alert("Username/Password not correct");

}

});

}

const loginAdmin = (name, pass) => {

const requestOptions = {

method: 'POST',

headers: { 'Content-Type': 'application/json' },

body: JSON.stringify({

adminName: name,

96

pass: pass

})

};

fetch('/portal/admin-login', requestOptions)

.then(response => response.json())

.then(data => {

console.log(data);

if (data.adminId) {

setIsLoggedIn(true);

setisAdmin(true);

setadminId(data.adminId);

navigate("/admin-dashboard");

} else {

setIsLoggedIn(false);

setisAdmin(false);

alert("Adminname/Password not correct");

}

});

}

const registerStudent = (student) => {

const requestOptions = {

method: 'POST',

headers: { 'Content-Type': 'application/json' },

body: JSON.stringify({

...student

97

})

};

fetch('/portal/create-student', requestOptions)

.then(response => response.json())

.then(data => {

if (data > 0) {

alert("Registration Successful!!");

navigate("/");

} else {

alert("Please retry, registration unsuccessful.");

}

});

}

const openProfile = () => {

const requestOptions = {

method: 'POST',

headers: { 'Content-Type': 'application/json' },

body: JSON.stringify({

studentId: studentId

})

};

fetch('/portal/student-details', requestOptions)

.then(response => response.json())

.then(data => {

if (data.studentId) {

98

setStudent({

...student,

studentName: data.studentName,

studentId: data.studentId,

email: data.email,

mobNo: data.mobNo,

pass: data.pass,

address: {

...student.address,

addrId: data.address.addrId,

city: data.address.city,

state: data.address.state,

country: data.address.country,

zip: data.address.zip

}

});

navigate("/student-dashboard/student-profile");

} else {

alert("We're facing some network issues!");

}

});

}

const saveStudentDetails = (student) => {

const requestOptions = {

method: 'PUT',

99

headers: { 'Content-Type': 'application/json' },

body: JSON.stringify({

...student

})

};

fetch('/portal/edit-student-details', requestOptions)

.then(response => response.json())

.then(data => {

if (data.studentId === studentId) {

alert("Details saved successfully!");

setstudentName(data.studentName);

openProfile();

} else {

alert("Please retry, failed to save changes.");

}

});

}

const openDashboard = () => {

navigate('/student-dashboard');

}

const openAdminDashboard = () => {

navigate('/admin-dashboard');

}

100

const availableTest = () => {

fetch('/portal/all-test-list')

.then(response => response.json())

.then(data => {

if (data.testDTOList) {

setstudentTestList({ ...data.testDTOList })

navigate("/student-dashboard/available-test");

} else {

alert("No tests available right now.");

}

});

}

const createTest = () => {

navigate('/admin-dashboard/create-new-test');

}

const saveTest = (test) => {

const requestOptions = {

method: 'POST',

headers: { 'Content-Type': 'application/json' },

body: JSON.stringify({

...test

})

};

101

fetch('/portal/create-test', requestOptions)

.then(response => response.json())

.then(data => {

if (data > 0) {

alert("Test Created Successful!!");

navigate("/admin-dashboard");

} else {

alert("Please retry, test not saved.");

}

});

}

return (

<>

<Header title="Online Exam Portal" isLoggedIn={isLoggedIn}

isAdmin={isAdmin} logout={logout} studentName={studentName} />

<div className="myImg">

<Routes>

<Route path='/' element={<Main />} />

<Route path='/student-login' element={<StudentLogin

loginStudent={loginStudent} />} />

<Route path='/admin-login' element={<AdminLogin loginAdmin={loginAdmin}

/>} />

<Route path='/register-student' element={<RegisterStudent

registerStudent={registerStudent} />} />

<Route path='/student-dashboard' element={<StudentDashboard

openProfile={openProfile} availableTest={availableTest} />} />

102

<Route path='/admin-dashboard' element={<AdminDashboard

createTest={createTest} />} />

<Route path='/admin-dashboard/create-new-test' element={<CreateTest

adminId={adminId} saveTest={saveTest} openAdminDashboard={openAdminDashboard}/>}

/>

<Route

path='/student-dashboard/student-profile'

element={<StudentProfile

student={student}

saveStudentDetails={saveStudentDetails}

openDashboard={openDashboard} />} />

<Route

path='/student-dashboard/available-test'

element={<AvailableTest

studentTestList={studentTestList}

openDashboard={openDashboard} />} />

<Route path='/student-dashboard/track-records'

element={<TrackRecords />} />

</Routes>

</div>

</>

);

}

export default App;

Index.js

import React from 'react';

103

import {StrictMode} from 'react';

import {createRoot} from 'react-dom/client';

import './index.css';

import App from './App';

import reportWebVitals from './reportWebVitals';

import { BrowserRouter } from 'react-router-dom';

const rootElement = document.getElementById('root');

const root = createRoot(rootElement);

root.render(

<BrowserRouter>

<StrictMode>

<App />

</StrictMode>

</BrowserRouter>,

);

reportWebVitals();

Home page:

It has a Header with the title “Online Exam Portal” & a main section with
“Student Login” and “Admin Login” buttons. If there is any new student it

will also show the link for “Registration”.

104

Admin Login Page :

An Admin can login through Id & Password. By any chance if the admin
forgets the password he/she cant enter to the “Admin Dashboard”. So,
we have implemented a “Face Login” feature. Through the face login the
admin can verify his/her face & can login. After successfully login it will
show the Swal “Success” message. If the password is not given it will show
a swal “Error” message.

Face Login :

105

Admin Dashboard Page:

It has 3 individual pages, 1: “Create Test” ,where admin can add,edit &
create tests; 2:”Created Tests”, where admin can see the tests he/she has
created or available right now and 3:”Registered Students”, where admin
can see the registered students

Create Test Page:

After clicking the “Create Tests” button the admin can create tests, add
more questions, save the tests & if required then can cancel the tests.

106

Student Registration Page:

This page takes all necessary student details like name, password, email,
phone no., city, country, pin code etc. There are some restrictions like
the mobile/ phone no. should contain only digits & 10 digits exactly ;the
password must contain at least 8 characters with at least 1 lowercase , 1
uppercase letter,1 symbol, 1 number; email must contain exact format
(includes ‘@’) etc.

Student Login Page:

If the student is already registered then he/she can login through this
page with mail id & password. This page also contains a link to the
student registration page. If the student is not registered, then he/she
will go to this page. There are some restrictions during login , the email
id should be in its exact format.

107

Student Dashboard Page:

After successful “login” or “registration” a student will arrive at this page.
The student can see his/her profile with details, can view available tests
& can track the records. For now “Track Records” is unavailable to a
student, it will be available when the admin will give permission after an
interval of time. If a student want to access the page it will show a block
sign.

108

Student Profile Page:

On clicking “Open Profile” a student can see his/her detailed
information. The student can also edit the details & can save or cancel
changes.

109

Available Test Page:

On clicking “Available Tests” a student can see the available
tests. For now there are 3 tests available, 1:”GK Test”, 2:”English
Test”, 3:”Math Test”. On clicking “Start Test” the student can
start the test. It will take him/her to another page where
he/she can give the test.

Test Pages:

A student can answer the MCQ & save it- in the question
palette it will show “Green”, i.e “Answered”; Clear the response-
in the question palette it will show “Red”, i.e “Not Answered”;
Answer & mark it for review- in the question palette it will
show “Blue”, i.e “Answered & Marked for review”; Mark question
for review- in the question palette it will show “Yellow”, i.e “
Marked ”. All of this changes will be shown to a student within
an “Alert box” .Below there is a “Timer” .

110

111

CONCLUSION
The development of the Online Exam Panel marks a pivotal
shift in the landscape of digital education. By harnessing the
power of MERN stack technology, this platform has
successfully addressed many of the limitations associated
with traditional examination methods. The system's ability to
facilitate seamless exam creation, management, and
execution provides educators with the tools they need to
deliver assessments efficiently, while students benefit from a
streamlined and accessible examination process.

A key feature of this Online Exam Panel is the incorporation
of face recognition technology for Admin login, which
significantly enhances the security of the platform. This
feature ensures that only authorised administrators can
access and manage critical data, safeguarding the integrity
of the examination process. Such robust security measures
are essential in maintaining trust and credibility in digital
assessments, particularly in an era where online education is
becoming increasingly prevalent.

Moreover, the platform's user-friendly interface and intuitive
design make it easy for both educators and students to
navigate the system. The ability to manage exams, view
results, and track performance in real-time offers users a
comprehensive and engaging experience. The flexibility and
scalability of the system further ensure that it can adapt to
the evolving needs of educational institutions,
accommodating a wide range of examination formats and
requirements.

In conclusion, the Online Exam Panel offers a modern
solution to the challenges of contemporary education,
enhancing exam efficiency and security. Its adaptable
platform is poised to support the evolving needs of digital
education, playing a vital role in the future of academic
assessments and fostering innovation in the field.

112

FUTURE SCOPE AND FURTHER

ENHANCEMENTS
The future scope of the Online Exam Panel is expansive, with
numerous opportunities for growth and innovation. As
educational technology continues to evolve, the platform can
be further enhanced to meet emerging needs and challenges.
Potential enhancements include the integration of AI-driven
analytics to provide personalised feedback and performance
insights for students. This would enable more tailored
learning experiences and help educators identify areas
where students may need additional support.

Another area for future development is the inclusion of more
advanced proctoring features, such as AI-based monitoring
tools that can detect suspicious behaviours during exams.
This would further enhance the integrity of the examination
process, ensuring a fair testing environment for all students.

Additionally, the platform could be expanded to support a
wider range of exam formats, including practical
assessments, group exams, and interactive assessments
using multimedia elements. This would allow institutions to
diversify their examination methods, catering to various
educational disciplines and learning styles.

Moreover, the Online Exam Panel could incorporate
multilingual support to cater to a global audience, making it
accessible to students and educators across different
regions and languages. Enhancements in mobile
compatibility could also be prioritised, ensuring a seamless
experience across all devices.

In summary, the Online Exam Panel has great potential for
growth, with opportunities to enhance features and integrate
advanced technologies, keeping it at the forefront of digital
education.

113

BIBLIOGRAPHY

1) http://www.w3schools.com/

2)https://www.intervue.io/

3) https://projectworlds.in/

4) https://www.researchgate.net/

5) https://stackoverflow.com/

6) https://www.academia.edu/

7) https://www.eklavvya.com/

8) https://online.visual-paradigm.com/

References

1. MERN Stack

○ Official Documentation: MongoDB, Express, React, Node.js

○ YouTube Tutorial: MERN Stack Tutorial for Beginners

2. Chakra UI

○ Official Documentation: Chakra UI Documentation

○ YouTube Tutorial: Chakra UI Crash Course

3. MUI (Material-UI)

○ Official Documentation: MUI Documentation

○ YouTube Tutorial: MUI Material-UI Tutorial

4. React.js

○ Official Documentation: React Documentation

○ YouTube Tutorial: React JS Full Course

114

http://www.w3schools.com/
https://www.intervue.io/
https://projectworlds.in/
https://www.researchgate.net/
https://stackoverflow.com/
https://www.academia.edu/
https://www.eklavvya.com/
https://online.visual-paradigm.com/
https://www.mongodb.com/
https://expressjs.com/
https://reactjs.org/
https://nodejs.org/
https://www.youtube.com/watch?v=7CqJlxBYj-M
https://chakra-ui.com/
https://www.youtube.com/watch?v=8Zt0jNNPsnI
https://mui.com/
https://www.youtube.com/watch?v=RWeEyNlO36k
https://www.youtube.com/watch?v=4UZrsTqkcW4

5. Node.js

○ Official Documentation: Node.js Documentation

○ YouTube Tutorial: Node.js Crash Course

6. Express.js

○ Official Documentation: Express Documentation

○ YouTube Tutorial: Express.js Tutorial

7. MongoDB

○ Official Documentation: MongoDB Documentation

○ YouTube Tutorial: MongoDB Crash Course

8. Bootstrap

○ Official Documentation: Bootstrap Documentation

○ YouTube Tutorial: Bootstrap 5 Tutorial

9. SweetAlert2

○ Official Documentation: SweetAlert2 Documentation

○ YouTube Tutorial: SweetAlert2 Tutorial

10. React-Redux

○ Official Documentation: Redux Documentation

○ YouTube Tutorial: React Redux Tutorial

11. Moment.js

○ Official Documentation: Moment.js Documentation

○ YouTube Tutorial: Moment.js Tutorial

12. Chakra UI vs MUI

○ Comparison Article: Chakra UI vs MUI

○ YouTube Comparison: Chakra UI vs MUI

13. ChatGPT

○ Official Documentation: OpenAI ChatGPT Documentation

○ YouTube Tutorial: ChatGPT Tutorial for Beginners

115

https://www.youtube.com/watch?v=fBNz5xF-Kx4
https://expressjs.com/
https://www.youtube.com/watch?v=L72fhGm1tfE
https://docs.mongodb.com/
https://www.youtube.com/watch?v=Of5KJb94D8E
https://www.youtube.com/watch?v=4sosXZsdy-s
https://www.youtube.com/watch?v=m2YO5t2uQEk
https://www.youtube.com/watch?v=9boMnm5Q09o
https://www.youtube.com/watch?v=4J2iq4UmsHQ
https://www.youtube.com/watch?v=xbH9gdUwexk
https://platform.openai.com/docs/guides/chat
https://www.youtube.com/watch?v=7aPq4K1M1DI

