
1 Generalized composite rheology

1.1 Making a composite viscous rheology

The stress in viscous materials can be described by the following constitutive relation:

τij = 2ηijklε̇kl (1)

where η is the viscosity of that element. If multiple elements experience the same stress, strain rates are summed:

τij = 2ηaijklε̇akl = 2ηbijklε̇bkl (2)

ε̇kl = ε̇akl + ε̇bkl (3)

If the elements are isotropic, the viscosities reduce to scalars, and an effective viscosity ηeff can be defined:

τij = 2ηeffε̇ij (4)

ηeff =
(
η−1
a + η−1

b

)−1
(5)

If multiple elements experience the same strain rate, stresses are summed.

τij = 2ηeffijklε̇kl (6)

ηeffijkl = ηaijkl + ηbijkl (7)

The reduction to isotropic elements is trivial:

ηeff = ηa + ηb (8)

1.2 Modelling firmoviscous (Kelvin) elements as viscous elements

Incompressible elastic elements with infinite tensile strength (infinite Young’s modulus) can only deform by shear. If
the material is elastically isotropic, resistance to shear deformation is given by the scalar shear modulus G. For small
elastic strains εel,

τelij = 2Gεel (9)

We can rearrange and differentiate to obtain an expression for the strain rate:

ε̇elij =
˜̇τij
2G

=
τ̇elij + τelikWkj −Wikτelkj

2G
(10)

where ˜̇τ is the objective co-rotational (Jaumann) stress rate tensor and Wij =
1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
the material spin tensor.

Discretizing the rate of deviatoric stress over an elastic timestep ∆tel:

ε̇elij =

(
τ t+∆tel
elij − τ telij

)
/∆tel + τ telikW

t
kj −W t

ikτ
t
elkj

2G
(11)

Grouping the terms from the current timestep into a single parameter τ 0
el and renaming the stress for the following

timestep:

τ0ij = τ tij +∆tel
(
W t

ikτ
t
kj − τ tikW

t
kj

)
(12)

τelij = τ t+∆tel
ij (13)

ε̇elij =

(
τelij − τ0ij

)
2∆telG

(14)

Consider now an isotropic viscous damper in parallel with the elastic element to make an Kelvin element:

τkelvinij = τelij + τdij (15)

= 2 (∆telG+ ηd) ε̇kelvinij + τ0elij (16)

We can find the damped elastic strain rate by rearranging:

ε̇kelvinij =
τkelvinij − τ0elij
2 (∆telG+ ηd)

(17)

The tensors τkelvin and τ 0
el may not be scaled versions of each other. For this reason, the second invariant of the strain

rate must be calculated from the sum of the two tensors, rather than by adding the two scalar strain rate invariants
together as is usual for isotropic viscous deformation.
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1.3 A composite elastoviscoplastic rheology

An example of an elastoviscoplastic rheology is shown in Figure 1. In this example, three viscous creep mechanisms
(diffusion, dislocation and Peierls creep) act simultaneously with a pseudoplastic element (i.e. a viscous element with
a very high stress exponent). In order to limit the effective viscosity between absolute limits (ηmin < η < ηmax),
this set of elements are arranged in parallel (isostrain) with a constant, isotropic viscosity damper of viscosity ηlimiter

(ηlimiter = (η−1
min − η−1

max)
−1, and then the entire package of components is arranged in series with another constant,

isotropic viscosity damper of viscosity ηmax. A Kelvin element is then added in series. Separating the elastic element
from the viscoplastic elements is done for computational convenience only (with this arrangement, the stored elastic
stress can be easily separated from the other components). In the following, we use the tensor identity:

Mij = ||M ||M∗
ij , (18)

where ||M || is the norm of M (||M || =
√
MII =

√
1
2 ((Mkk)2 −MijMji)) and M∗ is the normalised tensor.

τT

τ limiter

ηlimiter

τviscoplastic
ηmaximum τ el

τd

ηel

ηd

ε̇diffusion ε̇dislocation ε̇peierls ε̇pseudoplastic

ε̇viscoplastic ε̇hard ε̇kelvin

ε̇T

Figure 1: Proposal for a generalized elastoviscoplastic model in ASPECT.

The total shear stress is given by:

τTij = τviscoplasticij + τlimiterij = τhardij = τkelvinij (19)

The strain rate is equal to the sum of the viscoplastic, hard and kelvin elements:

ε̇Tij = ε̇viscoplasticij + ε̇hardij + ε̇kelvinij (20)

= ||ε̇viscoplastic||τ∗viscoplasticij +
||τT||
2ηmax

τ∗Tij +
||τT||
2ηkelvin

τ∗Tij −
τ0elij

2ηkelvin
(21)

ε̇Tij +
τ0elij

2ηkelvin
= ||ε̇viscoplastic||τ∗viscoplasticij +

||τT||
2ηmk

τ∗Tij (22)

ηmk =
(
η−1
max + η−1

kelvin

)−1
(23)

Now we need to demonstrate that τ∗Tij = τ∗viscoplasticij :

τTij = ||τT||τ∗Tij = τviscoplasticij + τlimiterij (24)

= τviscoplasticij + 2ηlimiterε̇viscoplasticij (25)

= ||τviscoplastic||τ∗viscoplasticij + 2ηlimiter||ε̇viscoplastic||τ∗viscoplasticij (26)

Therefore

τ∗Tij = τ∗viscoplasticij (27)

||τT|| = ||τviscoplastic||+ 2ηlimiter||ε̇viscoplastic|| (28)
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Substituting these expressions, we have

ε̇Tij +
τ0elij

2ηkelvin
= ||ε̇viscoplastic||τ∗viscoplasticij +

||τviscoplastic||+ 2ηlimiter||ε̇viscoplastic||
2ηmk

τ∗viscoplasticij (29)

(30)

1.4 The effective strain rate and viscoplastic stress derivatives

Defining the “effective” strain rate as

ε̇effij = ε̇Tij +
τ0elij

2ηkelvin
=

∣∣∣∣∣∣∣∣ε̇T +
τ 0
el

2ηkelvin

∣∣∣∣∣∣∣∣ τ∗viscoplasticij (31)

we obtain the scalar equality

||ε̇eff|| =

(
1 +

ηlimiter

ηmk

)
||ε̇viscoplastic||+

||τviscoplastic||
2ηmk

(32)

=

((
ηmax

ηmax − ηmin

)(
1 +

ηmin

ηkelvin

))
||ε̇viscoplastic||+

1

2

(
1

ηmax
+

1

ηkelvin

)
||τviscoplastic|| (33)

The derivative with respect to the viscoplastic (not total) stress is then

∂ ||ε̇eff||
∂||τviscoplastic||

=

((
ηmax

ηmax − ηmin

)(
1 +

ηmin

ηkelvin

))
∂||ε̇viscoplastic||
∂||τviscoplastic||

+
1

2

(
1

ηmax
+

1

ηkelvin

)
(34)

∂ ln ||ε̇eff||
∂ ln ||τviscoplastic||

=

[((
ηmax

ηmax − ηmin

)(
1 +

ηmin

ηkelvin

))
∂ ln ||ε̇viscoplastic||
∂ ln ||τviscoplastic||

+
1

2

(
1

ηmax
+

1

ηkelvin

)
||τviscoplastic||

]
||ε̇eff||−1

(35)

1.5 The effective viscosity, body force and stored stress

ε̇effij =
τviscoplasticij
2ηviscoplastic

+
τTij

2ηmax
+

τTij

2ηkelvin
(36)

The total stress is related to the viscoplastic stress via:

τTij = τviscoplasticij + τlimiterij (37)

= τviscoplasticij + 2ηlimiterε̇viscoplasticij (38)

=

(
1 +

ηlimiter

ηviscoplastic

)
τviscoplasticij (39)

Such that the effective strain rate is

ε̇effij =
τTij

2(ηviscoplastic + ηlimiter)
+

τTij

2ηmax
+

τTij

2ηkelvin
(40)

=
τTij

2ηeff
(41)

with the effective viscosity

ηeff =
(
(ηviscoplastic + ηlimiter)

−1
+ η−1

max + η−1
kelvin

)−1

(42)

The total stress can therefore be written:

τTij = 2ηeffε̇effij = 2ηeffε̇Tij +
ηeff

ηkelvin
τ0elij (43)

allowing the momentum equation to be expressed as the sum of viscous and body force parts:

−∂j(2ηeffε̇Tji) + ∂i(p) = ρgi + ∂jFji (44)

Fij =
ηeff

ηkelvin
τ0elij (45)
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The stored stress is the elastic stress:

τelij = τTij − 2ηdε̇kelvinij (46)

= τTij −
ηd

ηkelvin
(τTij − τ0elij) (47)

=

(
ηel

ηel + ηd

)
τTij +

(
ηd

ηel + ηd

)
τ0elij (48)

= 2ηeff

(
ηel

ηel + ηd

)
ε̇effij +

(
ηd

ηel + ηd

)
τ0elij (49)

so that the change in the stored elastic stress is

∆τelij =

(
ηel

ηel + ηd

)(
τviscoplasticij − τ0elij

)
(50)

1.6 Multiple components (isostress)

τT

τ limiter

ηlimiter

τviscoplastic
ηmaximum

ε̇vp1 ε̇vp2 ε̇vp... ε̇el1 ε̇el2 ε̇el...

ε̇viscoplastic ε̇hard ε̇kelvin

ε̇T

Figure 2: Proposal for a generalized elastoviscoplastic model in ASPECT.

For viscous elements arranged in parallel

ε̇viscoplasticij(τviscoplastic) =
∑
k

fkε̇viscoplasticijk(τviscoplastic) (51)

=
∑
k

fk
2ηviscoplastick

τviscoplasticij (52)

Such that the effective viscosity for a composite where each deformation mechanism is isotropic is

ηviscoplastic =

(∑
k

fk
ηviscoplastick

)−1

(53)

A similar statement is true of effective elastic moduli

G =

(∑
k

fk
Gk

)−1

(54)
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