
Publishing BIRT to Maven Central

BIRT has a complex release engineering process that has evolved over several decades with
effec�vely no documenta�on. The complexity compounded by the complete lack of people with
historical knowledge about the details. The dependencies were poorly managed and although that
has slowly improved, more investment is required. The complexity is further amplified by a plethora
of poorly documented ant tasks that produce ar�facts whose use case is not well understood and is
not documented.

There appears to have been one recent atempt to publish BIRT of Maven central for version 4.9.0
but that looks to be effec�vely a unstructured dump.

htps://repo1.maven.org/maven2/org/eclipse/birt

My impression is that the ar�facts and metadata are of such poor quality as to be effec�vely useless.

There also appear to be older atempts, but those too look like dumps:

htps://repo1.maven.org/maven2/org/eclipse/birt/run�me/

The task of publishing BIRT to Maven Central begs the ques�on, which ar�facts are important to
publish and which are not? E.g., does it make sense to publish to Maven Central bundles that are
effec�vely only useful in a running Eclipse IDE? I think probably not.

One might hope that BIRT’s feature defini�ons offer some guidance, but even those do a poor job of
defining what is actually core run�me versus IDE integra�on with IDE dependencies sprinkled into
the mix:

htps://github.com/eclipse-
birt/birt/blob/85b3299a63c439963b4766b2fe01b214ac613567/features/org.eclipse.birt.osgi.run�m
e/feature.xml#L215-L220

https://repo1.maven.org/maven2/org/eclipse/birt
https://repo1.maven.org/maven2/org/eclipse/birt/runtime/
https://github.com/eclipse-birt/birt/blob/85b3299a63c439963b4766b2fe01b214ac613567/features/org.eclipse.birt.osgi.runtime/feature.xml#L215-L220
https://github.com/eclipse-birt/birt/blob/85b3299a63c439963b4766b2fe01b214ac613567/features/org.eclipse.birt.osgi.runtime/feature.xml#L215-L220
https://github.com/eclipse-birt/birt/blob/85b3299a63c439963b4766b2fe01b214ac613567/features/org.eclipse.birt.osgi.runtime/feature.xml#L215-L220

I propose that we publish only those components with no Eclipse IDE dependencies, i.e., this subset.

We might also consider to omit org.eclipse.birt.chart.device.swt given its SWT dependencies
probably makes is not an interes�ng Maven ar�fact.

From past experience with publishing the Eclipse Pla�orm and the Eclipse Modeling Framework
(EMF) to Maven Central, an essen�al aspect of producing quality consumable ar�facts is publishing
POMs with proper dependencies, and properly tes�ng that those dependencies resolve.

A cursory dependency analysis of BIRT’s core run�me (including chart), groups the dependencies as
follows:

The Pla�orm and the EMF publish BIRT’s required dependencies to Maven Central, but DataTools
does not. That will need to be addressed; it could be addressed by publishing these to BIRT’s
coordinate space rather than by asking the DataTools project to publish its own ar�facts to Maven
Central.

The Orbit dependencies are those available via the Orbit project, specifically as made available by
these update sites:

htps://download.eclipse.org/tools/orbit/simrel/orbit-aggrega�on/

These newer Orbit dependencies are generally derived from Maven Central ar�facts and/or
correspond to equivalent ar�facts already available at Maven Central, so these are not problema�c
for the publishing process.

This dependency is problema�c because GEF does not publish to Maven Central:

But a quick analysis suggests this dependency is historical garbage that can be eliminated.

https://download.eclipse.org/tools/orbit/simrel/orbit-aggregation/

These few old/outdated dependencies definitely need aten�on:

I believe the first three can be easily addressed by using equivalents already available in Orbit. The
Derby dependency is significant problem in that the old version exposes consumers to CVEs. There is
a much newer version of Derby available:

htps://repo1.maven.org/maven2/org/apache/derby/derby/10.17.1.0/

Unfortunately that ar�fact is effec�vely garbage in terms of being a well-formed OSGi bundle. The
work needed for Orbit to produce properly structured Derby ar�facts, with sources, is substan�al
and is similar to what was needed to bundle Axis 1.x and Ant. Orbit will need to get the ar�facts
along with sources from here and then massage them for repackaging:

htps://db.apache.org/derby/derby_downloads.html

One gotcha with this new version is that it requires Java 21 effec�vely requires BIRT as a whole to
move to Java 21. This slightly older version does not:

htps://repo1.maven.org/maven2/org/apache/derby/derby/10.16.1.1/

But the latest version fixes a CVE…

The Eclipse Pla�orm publishes SNAPSHOTS to repo.eclipse.org:

htps://repo.eclipse.org/content/repositories/eclipse-snapshots/org/eclipse/

It’s probably a good idea that BIRT follows a similar process such that the published Maven ar�facts
are available and can be assessed for integrity before the results are ul�mately published to Maven
Central. It’s very problema�c that one cannot fix ar�facts published to Maven Central, one can only
publish new versions with the said fixes, so we really should aim to produce correct results the first
�me or accept several months delay for publishing a subsequent release correctly.

https://repo1.maven.org/maven2/org/apache/derby/derby/10.17.1.0/
https://db.apache.org/derby/derby_downloads.html
https://repo1.maven.org/maven2/org/apache/derby/derby/10.16.1.1/
https://repo.eclipse.org/content/repositories/eclipse-snapshots/org/eclipse/

Proposal

I propose to review BIRT’s 3rd party dependencies to ensure they are using only newer Orbit bundles
and to provide infrastructure in Orbit for producing OSGi ar�facts for newer Derby versions, ensuring
that said infrastructure is automated such that consuming and providing newer versions as they
become available in the future is a light-weight process. We must be prepared to address security
problems by providing and consuming new versions quickly and easily.

I propose to use the CBI p2 Aggregator, as already used by the Eclipse Pla�orm and EMF, for the
ini�al step in publishing BIRT’s p2 repository to a Maven-compa�ble repository. This repository can
then be further processed to publish the Maven ar�facts, i.e., associate sources and Javadoc. An
advantage of this approach is that the p2 Aggregator’s tools provide analysis support for previewing
the POM details in order to help detect and repair broken dependencies because it includes an
analysis of what is available at Maven Central:

I propose to to define rules for producing properly structured Maven coordinates and for producing
properly resolving dependencies, analogous to what has been done for the Pla�orm here:

Addi�onally, I propose to publish SNAPSHOT builds to repo.eclipse.org.

I believe it’s essen�al that someone actually test the published ar�facts before they are pushed to
Maven Central. Far too many �mes, problems are not reported un�l a�er the fact, and these
problems, as men�oned earlier, are impossible to repair. I am hopeful that the community will be
eager to help with tes�ng:

htps://github.com/eclipse-birt/birt/issues/625

In addi�on, someone needs to consider whether the ar�facts I propose to publish are sufficient and
are those that are actually needed. Again, I am hopeful to get construc�ve feedback from the
community.

https://github.com/eclipse-birt/birt/issues/625

