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I. INTRODUCTION

II. PROBLEM DESCRIPTION

A. Background

In recent years, the proliferation of mobile devices has
reached unprecedented levels, with smartphones becoming an
integral part of everyday life. These devices have increas-
ingly powerful hardware, making them suitable candidates
for running complex machine-learning models [1], [2]. Ma-
chine learning on mobile devices holds excellent potential
for many applications, from personalized recommendations
to democratizing big tech. One can imagine a world where
every smartphone (or personal computer) holder holds their
own portion of ”Google’s” database (and computation), having
all smartphones intercommunication and share information to
complete a search result, leading to a democratized distributed
peer-to-peer search engine, cleansed from the big tech influ-
ence and hidden agendas [3].

However, deploying machine learning models on mobile
devices presents numerous challenges, including limited com-
putational resources, memory constraints, and the need for
efficient communication between devices. The main struggle
this paper focuses on is connectivity between devices since the
communication in the context of this research will be handled
by the IPv81. IPv8 is a networking layer which offers identities
and communication with some robustness and provides hooks
for higher layers.

Personal devices, specifically smartphones, communicate
through home Wi-Fi and mobile networks like 4/5G. Using
these networks, the devices usually end up behind a home
NAT or a Carrier-Grade NAT (CGNAT). The existence of
these NATs makes it harder for the devices to communicate
with each other since they lock their discoverability by hiding
the devices behind the NAT’s private network, forcing the
“NATed“ device to initiate the connection first. This is not
a particularly impossible problem if one of the two peers has
a static IP address and is discoverable. It is particularly bad
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when both peers are behind NATs (even worse when it is
the same NAT, a problem common with CGNATs [4]), then
both need to initiate the connection first, but none of them is
“visible“ to the other.

The STUN protocol (RFC3489 [5]) outlines four types of
NATs: Full-cone NAT, Restricted-cone NAT, Port-restricted
cone NAT, and Symmetric NAT. These categories are further
classified in RFC4787 [4] as “easy“ NATs, which employ
Endpoint-Independent Mapping (EIM), and “hard“ NATs,
which utilize Endpoint-Dependent Mapping (EDM). EIM en-
sures consistency in the external address and port pair if the
request originates from the same internal port.

As per V. Paulsamy et al. [6], the specifications for these
NAT types are as follows:

• Full-cone NAT: This EIM NAT maps all requests from
the same internal IP:Port pair to a corresponding public
IP:Port pair. Moreover, any internet host can communi-
cate with a LAN host by directing packets to the mapped
public IP address and port.

• Restricted-cone NAT: Similar to Full-cone NAT, this
EIM NAT maps an internal IP:Port pair to an external
IP:Port pair. However, communication from an internet
host to a machine behind the NAT is only allowed if
initiated by that machine.

• Port-restricted cone NAT: Also an EIM NAT, similar to
Restricted-cone NAT but with additional restrictions on
port numbers.

• Symmetric NAT: This EDM NAT maps requests from
the same internal IP:Port pair to a specific public IP:Port
pair. However, it considers the packet’s destination as
well. Consequently, requests from the same internal pair
but to different external hosts result in different mappings.

Symmetric NAT is the most “problematic“ in the sense that
it is the hardest one to establish a connection with if both peers
are behind a NAT. Symmetric NATs behave very similar to a
hard firewall; that is, they only allow incoming packets from
a specific IP:Port pair only if an outgoing packet went to that
destination first. The reason that one might use a symmetric
NAT is when the administrator does not want to consume a
single IP address per user since they theoretically allow up
to 65535 simultaneous users. Symmetric NATs also give the
fallacy of security, as in being behind a firewall since they
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never expose the user to the whole Internet, only to hosts
that the user specifically “opted-in“ to communicate with. The
reason for this need for security is that the Internet lacks any
security model. Anybody can freely send you an unlimited
amount of data, spam, and malware [7]. A Symmetric NAT,
to the average user, will not be an obstacle to their everyday
browsing, but it becomes a big problem with peer-to-peer
protocols, i.e. BitTorrent —In their 2008 study on fairness for
BitTorrent users, J.J.D. Mol et al. [8] discovered that peers
behind firewalls encounter greater challenges in achieving
equitable sharing ratios. Consequently, they advocated for
either puncturing NAT or employing static IP addresses to
enhance network performance.

B. Research problem

The central problem of this thesis revolves around the dis-
tribution of Machine Learning on 4/5G Networks. To achieve
this, one must connect efficiently to other peers through the
cellular network.

Specifically, this project introduces the functionality lacking
in IPv8 where they have an overlay network and APIs to
connect more or less any peer devices, except when a peer
is behind a Symmetric NAT. IPv8, as it stands, cannot add in
the network peers behind this kind of NAT [9].

To overcome this limitation, this paper introduces a library
to improve the proposal of D. Anderson’s Birthday Attack
blog post [10]. According to that blog post, if both peers
send simultaneously ≈ 170000 connection-request packets,
they have ≈ 99.9% probability of connecting. This is not
entirely accurate since it doesn’t consider the size of the
NAT’s HashTable nor the timeout time of the NAT. This
paper proposes an improvement using data gathered from
each provider’s cellular data NAT, which is then analyzed to
bias the attack to increase its success rate and avoid sending
unnecessary packets that would, in turn, sabotage the attack.

The solution is a standalone open-source Kotlin library
introduced in the following sections. It is evaluated both as a
standalone library and also as part of IPv8, where the machine
learning workload of TensorFlow Lite [11] will be distributed
on Android mobile phones using the IPv8’s ecosystem.

C. Objectives

The primary objectives of this thesis are as follows:

1) Address the NAT puncturing problem to enable seamless
connectivity among devices, even when behind NATs
or firewalls, by developing a NAT puncturing library in
Kotlin.

2) Evaluate the proposed framework’s performance, scala-
bility, and resource utilization through experimental val-
idation and benchmarking on Android devices obtained
from the Tribler lab2.

2https://www.tribler.org/about.html

III. METHODOLOGY

The first step in having peer-to-peer distributed AI ap-
plications run on mobile phones using a cellular network
is establishing a connection between two (or more) mobile
phones. To achieve that communication, the communication
parameters need to be known, i.e. the type of NAT used,
timeouts and the maximum data that can be transmitted.
These parameters are extremely useful in maintaining the
communication channel and choosing connectivity strategies,
but the telephone carriers do not make them available to the
public. The algorithms used to estimate these parameters are
in the first three sections of this chapter.

In order to have peer-to-peer distributed AI applications run
on mobile phones using a cellular network, one needs to first
“connect“ these mobile phones. This part builds on top of the
approach proposed by D. Anderson [10], which was analysed
further in a previous study by the same authors of this study
[9], which suggests a method for peer-to-peer communication
through the randomized exchange of packets until a successful
”match” is achieved.

Anderson’s approach of performing a Birthday attack to
reduce the number of packet exchanges performed yielded an
underwhelming success rate on the Dutch carriers as discussed
in section ??; thus, an analysis of the inner workings of
the NATs used by the carriers was performed to utilize that
knowledge and potentially increase the connectivity (success)
rate.

The implementation of all algorithms found in these chap-
ters are available in GitHub [12]

A. NAT Types

As already mentioned, Symmetric NAT can severely restrict
P2P connectivity, which is the main NAT type that requires
an alternative connectivity method. All other NAT types can
get away with having some “middle-man“ (another peer in the
case of full distribution) to keep track of the NAT mapping
(of the new peer) and communicate it to the peers wanting to
connect to them. Connecting to a NAT by trying all possible
combinations of ports is a very costly operation and thus
should be avoided whenever necessary (no peer is behind a
Symmetric NAT). A problem arises when there are no other
peers to relay information; thus, the NAT needs to be attacked
for a connection to be established.

The NAT types, determined from algorithm 1 are particu-
larly useful in the case that there is a network already establish
and information about peers can be passed around.

Algorithm 1 is based on RFC3489 [5] where the client (in
this case the mobile phone) sends a Binding Request —over
UDP— to a STUN server in order to determine the bindings
allocated by the NATs. The STUN server will respond with
a message containing the IP address and port that the request
came from. The client will then send more Binding Requests
to different ports and different STUN servers.

With the responses of these requests the client can then
determine the NAT type that they are behind by analysing
how the responses of the STUN servers changed.
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Algorithm 1 STUN Test, NAT Type Detection, and Getting
IP Information

1: function STUNTEST(sock, host, port, sendData)
2: Initialize response data structure
3: Convert sendData to hex byte array with headers
4: Send byte array to (host, port)
5: Receive and decode response packet
6: if response matches and transaction ID correct then
7: Parse attributes like Mapped Address, Source Ad-

dress, etc.
8: end if
9: return response

10: end function
11: function GETNATTYPE(s, sourceIp, stunHost, stunPort)
12: Attempt STUN test with provided or default server
13: if initial test fails then
14: for all server in STUN SERVERS do
15: Attempt STUN test with server
16: end for
17: end if
18: Determine NAT type based on test results
19: Perform additional tests for refining NAT type
20: return NAT type
21: end function
22: function GETIPINFO(sourceIp, sourcePort, stunHost, stunPort)
23: Create socket with specified source IP and port
24: Determine NAT type using GETNATTYPE
25: Close socket
26: return NAT type, external IP, and external port
27: end function

The type of NAT used by the carriers tested are shown in
table III.

B. Determining NAT Timeouts

To get a clear idea of how the NAT mappings over UDP
work, one can imagine the first outgoing packet as both a
regular packet and a connection initiation message. When
this first packet is sent, the NAT that the packet was sent
from starts a timer as soon as the packet leaves. That timer
waits for a response from the receiving client, meaning that
the packet was received/accepted, and regular communication
will follow. This timer will be referred to as connection
initiation timeout throughout this section. Knowing
this parameter is very useful for the case of a fully collabora-
tive distributed network since the connection initiation timeout
is the time that the peers have to collaborate and connect the
new joiner based on the NAT mapping that the new joiner
advertised.

The second type of timeout is called session timeout,
meaning how long will the mapping remain active while there
are no outgoing or incoming packet flows? Knowing how long
the session can remain active while idle is used to determine
how often “connection maintenance“ packets need to be sent
to keep the connection alive. Once a connection is established,

it is preferred to be maintained since maintaining a connection
is much “cheaper“ than re-establishing one.

The reason that the two are separated is because usually the
connection initiation timeout is much smaller than the session
timeout.

Starting with determining the connection initiation timeout,
initially, algorithm 2 establishes a lower and an upper bound
on the time that the mapping will remain active while waiting
for a response. This is achieved by sending a packet to the
server, which the server waits a fixed amount of time before
sending a response. The time the server waits is incremented
by a fixed number after each packet is received. When no
response is received by the mobile phone —meaning that the
NAT mapping disappeared— the time that the server waited
to send the response is the upper bound of the timeout. The
wait time of the last received packet will be the lower bound.

When the bounds are established, a binary search (algorithm
3 is performed on those bounds to find the precise —down to
the second— timeout of the NAT.

Algorithm 2 Function to find the connection initiation timeout
upper and lower bounds

1: function CONNECTIONINITIATIONTIMEOUTBOUNDS
2: delay ← 0
3: INC ← IncrementationConstant
4: create UDP Socket
5: do
6: delay ← delay + INC
7: sendUDPPacket(delay)
8: while timeoutMsgRcvr(delay) is true
9: ConnectionInitTimeBinary(delay − INC, delay)

10: end function

Algorithm 3 Binary search on the timeout interval to get
accuracy to the second

1: function CONNECTIONINITTIMEBINARY(l, r)
2: while l ≤ r do
3: delay ← (l + r)/2
4: sendUDPPacket(delay)
5: responseRcvd← timeoutMsgRcvr(delay)
6: if responseRcvd then
7: l← delay + 1
8: else
9: r ← delay − 1

10: end if
11: end while
12: return l, r
13: end function

The algorithm for determining the session timeout, is very
similar to the one for connection initiation timeout; Initially,
algorithm 4 establishes a lower and upper bound on the
idleness time of a connection. The algorithm works as follows:
The client sends a packet to the server, and the server responds
with the port number from which the client sends it. Then,



the client waits a fixed amount of time until it sends the next
packet. The wait time is incremented by a fixed number after
each packet is sent. The client compares the port in the body of
the server’s response i.e. the port that server believes that the
client sent the message from. If the port in the latest response
is not the same with the the one in the previous means that
the mapping timed out and a new one was created.

When the bounds are determined, a binary search is run
within those bounds to precisely determine the expiration time
down to the second as shown in algorithm 5.

Algorithm 4 Function to find how the lower and upper bound
of how long a NAT mapping is active while there is no
incoming or outgoing packets

1: function SESSIONTIMEOUTBOUNDS
2: delay ← 0
3: INC ← IncrementationConstant
4: create UDP Socket
5: prev port← null
6: do
7: wait(delay × 1000)
8: sendUDPPacket(”TIMEOUT − TEST”)
9: resp← timeoutMsgRcvr()

10: port← extract port(resp)
11: if prev port = null then
12: prev port← port
13: end if
14: delay ← delay + INC
15: while prev port = port
16: l← delay − (2× INC)
17: r ← delay − INC
18: SessionTimeoutBinary(l, r)
19: end function

The results of multiple runs of these algorithms on different
telecom carriers can be seen in section VI-C.

C. Maximum Transmission Unit

The maximum transmission unit (MTU) denotes the maxi-
mum size of a single data unit that can be sent in a network
layer transaction. MTU is related to the maximum frame size
at the data link layer (such as an Ethernet frame).

A larger MTU is linked with reduced overhead, allowing
more data to be transmitted in each packet. Conversely, smaller
MTU values can help decrease network delay by facilitating
quicker processing and transmission of smaller packets.The
determination of the appropriate MTU often hinges on the
capabilities of the underlying network and may require manual
or automatic adjustment to ensure that outgoing packets don’t
exceed these capabilities.

A jumbo frame is an Ethernet frame with a payload greater
than the standard maximum transmission unit (MTU) of 1,500
bytes.

Algorithm 6 is used to determine the MTU of each carrier by
running this algorithm each time with different sim cards from
different providers. The algorithm is a binary search which

Algorithm 5 Function to find exactly how long a NAT
mapping is active while there are no incoming or outgoing
packets

1: function SESSIONTIMEOUTBINARY(l, r)
2: sendUDPPacket(”TIMEOUT-TEST”)
3: response← timeoutMessageReceiver()
4: latestPort← extract port(response)
5: while l ≤ r do
6: midpoint← floor((l + r)/2)
7: delay(midpoint ∗ 1000)
8: sendUDPPacket(”TIMEOUT-TEST”)
9: response← timeoutMessageReceiver()

10: port← extract port(response)
11: if latestPort = port then
12: l← midpoint+ 1
13: else
14: r ← midpoint− 1
15: latestPort← port
16: end if
17: end while
18: return r, l
19: end function

Algorithm 6 Function to find the Maximum transmission unit
of a carrier

1: function FINDMTU
2: icmp← new Icmp4a()
3: left← 0
4: right← 65507
5: while left < right do
6: midPoint← floor((left+ right)/2)
7: result← icmp.ping(packetSize = midPoint)
8: switch result do
9: case Success

10: left← midPoint+ 1

11: case Failed
12: right← midPoint− 1

13: end while
14: return right
15: end function

tries to find the precise number of bytes, where one more
byte will cause the packet to be split into two. Table V shows
the MTU of the different providers tested and whether they
support Jumbo frames.

D. Simple Birthday Attack

The rule for communicating in a NATed network is that the
person behind the NAT must initiate communication first. The
assumption is that the Internet works mainly in a Client-Server
fashion where the Server is discoverable (has a Public Static
IP address). This assumption breaks in the case of peer-to-
peer communication between two clients behind a NAT since
none are discoverable, no one can initiate the communication.



Algorithm 7 Simple Birthday Attack

Require: On packet received, send an ACK
Require: On packet received, ack rcvd← True
Require: On packet received, store senders port

ack rcvd← False
open UDP socket
msgs sent← 0
UUID ← generate UUID()
packet← create packet(UUID)
while msgs sent < 243587 and no ack rcvd do

port← getrandomport()
send packet(port, packet)

end while
if ack rcvd then

maintain connection(IP, port no)
else

Birthday Attack was unsuccessful
end if

A solution to this is as explained in [9], [10]. Both peers
should send packets to random ports until a ”match” is
achieved. A match is when peer A sends a packet from port
X to port Y, and peer B sends a packet from port Y to port
X in a timeframe smaller than their NAT’s timeout. One can
understand that the probability of this match is 1

655352 , which
is almost impossible to achieve given restrictions that will be
imposed by the carriers when a huge amount of rapid requests
will be fired towards the NAT, let alone it will take a lot of
time.

This can be improved using a Birthday Attack, which is an
attack built on the Birthday Paradox [13], a counterintuitive
probability theory concept that states that in a group of just 23
people, there’s a better than 50% chance that two people share
the same birthday. This might seem surprising, as intuition
might lead one to think that with 365 days in a year, it would
require many more people to have such a high probability of
a shared birthday. The paradox arises because we’re not just
looking for a specific birthday match but any pair of people
with matching birthdays. The probability of any two people
not sharing a birthday decreases as more people are added to
the group, and the opposite, the probability of at least one pair
sharing a birthday increases rapidly.

The birthday paradox can be used to reduce the number
of combinations of sender port, receiver port while main-
taining a satisfactory match probability. From the Birthday
Paradox calculator [14], one can get a 50% success rate of a
match after sending 77162 packets, and for a 99.9% success
rate, 243587 packets are needed. Due to the nature of NATs
(timeouts and a limited number of mapping maintained), these
probabilities are unlikely to occur, but this would be the case
even if all combinations are attempted.

Using the numbers above, an Android application [12] was
developed to attempt to connect two mobile peers using 4/5G
(which is by default using a NAT) using algorithm 7.

The results of the evaluation of 10 runs per carrier are

shown in table I. A green S signifies that sometime during the
Birthday Attack (a set of 243587 random requests), one went
through, and communication was established. An F means
no attempt went through; thus, the birthday attack failed.
The evaluation of the simple birthday attack did not show
auspicious results. The first conclusion that can be derived
is that whether the attack will lead to a connection is very
dependent on the telecommunication carrier pair. As one can
see, when Vodaphone was one of the peers, there was always
a successful attack. Another fascinating result is that only
Vodaphone connected with a carrier of the same type, which
was also the trial with the most successful connections.

These aside, a very small part of the trials resulted in at
least one successful connection, let alone that many of the
carrier combinations never succeeded. Even once they manage
to eventually succeed at connecting, it is not satisfactory
since one successful attempt out of ten makes this protocol
costly in terms of cellular data used and time inefficient since
coordinating two users to start attacking at the same time is
already hard and error-prone on its own, doing it multiple
times to achieve a single connection will deem the algorithm
not very useful.

E. Improving the Birthday Attack

Given the complexity and the cost of cellular data and time,
the success rate of the simple birthday attack, as shown in
table I, is unsatisfactory; after multiple hypotheses on how
to improve the connectivity based on time of connection,
area, etc. The most prominent idea that the research team
came up with is to understand the inner workings of each
NAT, i.e., discover how the mapping works, whether there
are any consistent patterns followed, etc. and then use that to
predict what will be the next ports that each NAT will map
the requests to. So instead of trying to connect to random
ports of the peer, make a prediction —partially based on the
NAT’s inner workings, partially random, to enable exploration
and exploitation— of what port the peer’s NAT will map to
and attempt that. The peer will do the same, thus potentially
increasing the probability of connecting. This will still be
attempted based on the Birthday Paradox 99.9% probability
of success, i.e. 243587 attempts.

To understand the inner workings of the NATs, it was first
assumed that no carrier uses the same NAT (in terms of config-
uration) since it was observed from different experiments, i.e.
NAT timeouts, that even though there are some standards on
how a NAT should be configured such as RFC 2663 and 4787
[4], [15] it is not necessarily followed; thus an Android mobile
client and a Kotlin server were developed [16] to gather data
on each carrier that a SIM card could be easily acquired by
visiting the country, buying SIM cards and gathering data on
their local network. The mobile client sends packets containing
a UUID3 to the server from random mobile ports to random
server ports. The UUID, a timestamp, and the source and
destination ports are saved in a CSV file for each packet sent.

3https://docs.oracle.com/javase/8/docs/api/java/util/UUID.html



Odido Lebara LycaMobile VodaFone KPN
Odido F,F,F,F,F,F,F,F,F,F - - - -
Lebara F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F - - -
LycaMobile F,F,F,F,S,F,F,F,F,F F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F - -
VodaFone F,F,F,S,F,S,F,F,F,F F,F,F,F,S,F,F,F,F,F F,F,F,F,F,F,S,F,F,F F,F,F,S,S,F,F,S,F,S -
KPN F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F

TABLE I: Results of 10 consecutive simple Birthday Attacks for each pair of Carriers (F= No connection, S = Successful
connection sometime during the attack)

The server, which lies behind an unrestricted network having
its own static IP address, does the same; once a packet is
received, it stores the UUID (which is in the body of the
packet), the port that the mobile sent it from (NAT mapping),
and the port that the server received it from together with a
timestamp on when the packet was received. The two CSVs
are then inner-joined on the UUID column, resulting in two
crucial columns: the port the mobile believes it sent the packet
from and the port the packet came from, i.e. the exact NAT
mapping.

To figure out the algorithm behind each mapping, i.e. what
drives the decision-making on which port maps to which and
when, a manual Exploratory Data Analysis (EDA) [17] is
performed [18] to uncover the hidden inner workings of each
NAT. The questions that the EDA aims to answer are:

1) Is the first port mapping completely random?
2) Is the mapping following some pattern?
3) Does the pattern, if it exists, depend on the port choices,

sender or receiver? Is it time-based?
4) For how long is the pattern being followed, and if it

changes at some point, why?
To answer these, different tests are performed while trying
to make sense by visualizing the data or analysing time
or population-based windows. The results of this EDA are
explained in section VI-A.

Using the findings of the EDA, a new connectivity library
was developed. The algorithm is very similar to algorithm 7
used for the simple birthday attack, with two major differences.
First, instead of choosing a random port to send to, it chooses
the port based on the peer’s port-choosing algorithm shown
in table II. This means that to have a higher probability
of connecting to some peer; one needs to know the carrier
from which the peer is connected. The second difference is
that the phone opens one hundred random ports and listens
to all of them simultaneously —this, though, has the side
effect of sometimes overloading the phone’s CPU and using
a lot of memory. Thus, some of the experiments ended in no
connection since an exception was thrown by the CPU).

IV. SYSTEM DESIGN

V. IMPLEMENTATION

VI. EVALUATION

A. Inner workings of NATs

In this chapter, we delve into the inner workings of Cellular
Data NAT across various service providers. Through reverse
engineering efforts targeting multiple providers, we unveil the

nuanced mechanisms NAT systems employ. Each provider
has a different implementation of address mapping strate-
gies, which hinders connectivity on peer-to-peer protocols.
By dissecting these NAT architectures, we gain a deeper
understanding of their address-mapping strategies, which can
be used to one’s advantage when connecting to another peer
using cellular data. The analysis is freely available on GitHub
[18].

The data gathered using a simple app developed for this
research [16] utilises a server with a static open IP address
and a phone sending packets to the server containing a UUID.
The phone stores the UUID, a timestamp, the port from which
it sends the packet, and the port to which it sends it. The
server stores the UUID, a timestamp, the phone’s port, and
the received port. Then, the two files are joined on the UUID,
showing the port the phone opened and the port the NAT
mapped it to. This relationship is then analyzed across runs to
understand the address-mapping strategy of each NAT.

1) Lebara Netherlands: The initial observation was that
many sender ports (what the server sees as return addresses)
seemed to follow a linear pattern. Initially, some random port
was chosen, then the next port’s number would be the one
of the previous +1, and so on, until a condition was met that
would cause it to choose a new random port to start with and
then get the consecutive ones and so on.

It was also observed that the initial random ports were often
reused across sessions, but those specific numbers were not
common across runs. For example, if the first port open was
port 12800 and the next x ports, this sequence would be seen
multiple times across the run. It is the same with the second,
third, random, and consecutive ports, but not as frequently.

One can see from figure 1 that the port mapping follows
a pattern. It starts from the 3625 region —region since it is
not the actual starting port—, stays in that region for a bit
(incrementing the port numbers by 1), chooses other random
regions and then goes back to the 3625 region. One can also
notice that the intervals between NAT defaults back to the
3625 region are more or less constant.

Another observation was when observing the length of the
linear increases. During low traffic hours, what was observed
was that the initial “random“ port’s number was a multiple of
256 (28), then the next 255 consecutive ports will be used,
and then another random starting port (again multiple of 256)
will be used and so on as can be seen in figure 2.

This NAT behaviour is consistent with the findings of
Microsoft in 2011 [19] but builds on top of it, discovering
that address blocks in the case of Lebara (and KPN, as is



Fig. 1: Port mapping through time on a single Lebara run of
≈ 128 minutes

explained later) are also usage-based and not only time-based.
Meaning that a user will remain on that port block until either
the ports timeout or until the user consumes the whole block.

Fig. 2: Frequency of consecutive port numbers used by Lebara

The assumption is that consecutive ports are grouped to-
gether in groups of size 256. The exact number of groups
cannot be inferred since not all ports were observed, but it
seems to span the whole space of 65535 ports. Thus, it is
assumed that there are 256 groups of 256 ports. The ports are
probably grouped in queues, and then users are assigned to
queues. They consume port mappings until the queue runs out
of available ports; then, they are assigned to another queue.
When the ports are freed or timed out, they return to their
queue.

The strategy on who is assigned to which queue cannot
yet be inferred, but it is probably either based on the number

of consumers in the queue or the queue size. Both of these
strategies are reasonable because the same ranges are con-
sumed repeatedly since they timeout and the queue gets full
again, and no one is currently using it since it was empty.

Both strategies are also validated throughout the day. On
low traffic hours, the test phone was assigned a full queue,
which may be either because of the queue size or because no
one else was consuming (morning hours in a residential area).
Similar to peak traffic hours on the university campus, many
times, the phone achieved a significant amount of consecutive
ports. This means that there is some strategy on the NAT to
give the user as many ports as possible, again, either through
the number of consumers on the specific port range or based
on the number of available ports on that range.

2) KPN: KPN behaves exactly like Lebara, that is ports
are grouped in groups of 256 with consecutive port numbers.
The main difference between KPN and Lebara is that KPN
has more infrastructure than Lebara —since Lebara is renting
infrastructure from KPN— thus, as one can see in figure 3,
the test phone managed to consume much more groups of 256
consecutive ports in its entirety than on Lebara. This is likely
the case because of the difference in the number of users per
infrastructure.

Fig. 3: Frequency of consecutive port numbers used by KPN

The number of subscribers on a single KPN hardware/
IP address makes KPN significantly more predictable than
Lebara. During the testing period, the test phone consumed
a port group in its entirety 32.3% of the time. On top of that
36.9% of the time, the phone got assigned to a group where
the initial port was available (the port number was divisible
by 256). This observation gives birth to a strategy of trying
port numbers divisible by 256. This may significantly increase
the probability of achieving a collision since the phone can
perform a request every ≈ 15ms, meaning that it can try all
ports divisible by 256 in under 4 seconds.

3) LycaMobile Netherlands: LycaMobile, although utiliz-
ing the network of KPN, employs a different strategy for their



address mapping. After analyzing ≈ 288000 mappings, there
seems to be complete randomness. No mapping is reused (very
few are and in different runs; thus, they are assumed to be
a coincidence), and there is no linearity on the mappings,
making their address mapping strategy a First Come, First
Serve on available ports.

Regarding efficiency, the theory on the inner workings
is a FIFO Queue of available ports that all network sub-
scribers subscribe to and “consume“ free ports in the range
[2048, 65535]. When a port is freed or time-out, it returns
to the Queue. There is no indication of the port numbers
being sorted, or eventually sorted, since consecutive ports were
consumed so rarely, even on low traffic hours, that it can just
be written off as a coincidence.

4) Vodafone Netherlands: For Vodaphone, more than 900
thousand mappings were collected and analysed. It is shown
that Vodaphone is not following the KPN, Lebara model of
dividing ports into blocks of 256, and it did not seem to be
similar to LycaMobile, which assigns the user a random port.

This led to a series of tests since the graph of fre-
quency mappings resembled a normal distribution. Performing
a Shapiro-Wilk test [20] showed that it is not a normal
distribution; after further examination, it was determined that
it was possible to fit a beta distribution. One can see in figure
4 how well the beta distribution (orange) fits on the frequency
of mappings of Vodafone (blue).

Fig. 4: Beta Distribution fitting on Vodafone’s mappings

The beta distribution is a continuous probability distribution
defined on the interval [0, 1]. Two shape parameters character-
ize the distribution, typically denoted as α, β; these parameters
control the shape of the distribution. Alpha influences the
shape of the distribution towards higher values, and beta
influences the shape of the distribution towards lower values
[21]. Two more parameters can be used, which in this case
were very useful, i.e. the location parameter, which specifies
the location or shift of the distribution along the x-axis and the
scale, which determines the scale or spread of the distribution
along the x-axis.

The empirical Beta distribution derived is:
Y ∼ B(α, β, loc, scale) = B(2.242, 5.008, 4630, 13937)

5) Odido: .....
A high-level description of the inner workings of each NAT

analysed in a mathematical notation can be seen in table II

B. Nat Types

Knowing the NAT type of the carrier that one is using and
also of the peer they want to connect allows one to adapt their
connectivity strategy to increase the chance of connecting.
Different strategies should be adopted based on the types, i.e.
a Symmetric NAT requires a Birthday Attack, while one can
easily connect with a peer behind a Full-Cone NAT using a
STUN server. The types of the NATs of various carriers are
presented in table III.

C. Timeout of NATs

Understanding a NAT’s timeout is crucial for efficient
network management and troubleshooting. First, knowing the
timeout period for waiting for a response ensures that THE
protocol administrators can optimize their network configu-
rations for timely communication. Second, it was useful in
understanding patterns of the NAT’s behaviour, such as why
some port numbers are being reused repeatedly in similar time
frames. Thus, aligning the NAT puncturing strategies with
the expected timeout duration increases the probability of a
puncture. These timeouts are shown in the left side of table
IV

Secondly, NATs also have an idleness timeout, i.e., a map-
ping is deleted if it is not used. Establishing a connection
is costly; thus, maintaining it, even if not needed at some
particular instance, is the way to go. To achieve that, one needs
to send connection maintenance packets, i.e. empty packets,
that will trick the NAT into thinking that some communication
is still happening. One can use the precise timeout of the
NAT to send these packets at intervals that will not flood the
network unnecessarily while also ensuring that the connection
stays active. These timeouts are shown in the right side of
table IV.

D. Maximum Transmission Unit

Knowing a carrier network’s Maximum Transmission Unit
(MTU) offers several advantages. Firstly, it helps optimize net-
work performance by determining the largest packet size that
can be transmitted without fragmentation, reducing overhead
and latency. Additionally, understanding the MTU enables
efficient bandwidth utilisation, as smaller packets may lead to
increased overhead and decreased throughput. Knowledge of
the MTU facilitates troubleshooting network issues, allowing
for more effective diagnosis and resolution.

As for jumbo frames, their presence further enhances
network efficiency by supporting larger packet sizes than
standard MTU, thereby reducing the overhead of transmitting
data. However, it’s important to ensure compatibility with all
devices and networks involved to fully leverage the benefits
of jumbo frames.



Country Name Algorithm Infrastructure Owner ID Required

Netherlands KPN

Let Bi represent a block of 256 port numbers [
Bi = 256× i, 256× i+ 1, . . . , 256× i+ 255]fori = 0, 1, . . . , 255

The user is randomly assigned to a block Bi, which has available port numbers
When Bi has no more available ports, the user is assigned to Bj , etc.

✓ ✓

Netherlands Lebara

Let Bi represent a block of 256 port numbers
[Bi = {256× i, 256× i+ 1, . . . , 256× i+ 255}]fori = 0, 1, . . . , 255

The user is randomly assigned to a block Bi, which has available port numbers
When Bi has no more available ports, the user is assigned to Bj , etc.

KPN ×

Netherlands LycaMobile Random Sampling from the block [2048, 65535] KPN ×

Netherlands Vodafone Beta Distribution:
Y ∼ B(α, β, loc, scale) = B(2.242, 5.008, 4630, 13937)

✓ ×

Netherlands Odido ✓ ×
France Orange ✓ ✓
France SFR ✓ ✓

Belgium Orange ✓ ✓
Belgium LycaMobile TeleNet ✓
Norway Telia ✓ ✓
Norway MyCall Telia ✓
Cyprus Epic ✓ ×
Cyprus Cyta ✓
Cyprus Primetel ✓
Cyprus Cablenet ✓

TABLE II: The algorithm each carrier uses, in mathematical notation, and the ease of obtaining a SIM card from them.

Provider Type Area
Lyca NL 4G Full Cone Echo Tu delft
Lyca NL 5g Full Cone Echo Tu delft
Vodaphone 4G Restrict NAT Echo Tu delft
Vodaphone 5G Restrict NAT Echo Tu delft
KPN 4G Symmetric NAT Echo Tu delft
Lebara 4G Restrict NAT Echo Tu delft
Orange Belgium 4G Symmetric NAT Spiti tu giorgou Bg
Lyca Mobile Belgium 4G Restrict NAT Spiti tu giorgou Bg
MyCall Norway 4G Full Cone NAT Oslo Airport
Telia Norway 5G Restrict NAT Oslo Airport
Telia Norway 4G Restrict NAT Oslo Airport

TABLE III: Nat Types of all the carriers tested and the location
of the test

The MTU of various carriers and whether their network
supports jumbo frames is presented in table V.

E. Roaming

Roaming seems to be significantly affecting the birthday
attack. No conclusive evidence is derived on a universal
change in the behaviour of carriers while roaming since it
seems that every carrier behaves differently. Some anecdotal
evidence of the change are:

1) Telia and MyCall Norway: Telia and MyCall both
had a 120 second timeout on waiting for a response on
the first packet send —measured in the Oslo airport.
When measure in Delft, Netherlands (both tunneling
through LycaMobile) the timeout fell to 5 seconds and
19 seconds respectively thus indicating that roaming
affects the behaviour of the timeout.

2) LycaMobile Belgium: LycaMobile Belgium was never
tested in Belgium due to technical difficulties but when
measured in Delft, Netherlands no response reached the
phone. Indicating that the timeout is so small, even
the smallest delay will lead to a timeout. This does

not make sense to be the standard behaviour since it
can lead to a very bad user experience. Also, since
no carrier tested in their local country has such a tiny
delay, it hints that, potentially, the timeout changes when
roaming. However, for LycaMobile, this has not been
proven beyond doubt.

3) Vodaphone Netherlands: A birthday attack between
two phones on the Vodaphone NL network where each
phone is choosing random ports (each attack was com-
prised of 170000 attempts) led to a success rate of 4 out
of 10 attempts (an attempt is a full birthday attack, all
170k requests and a success means that in those 170k
packets sent, one was received). Upon attempting to re-
measure this from Cyprus (thus, the two phones would
be roaming to the Vodaphone NL network through
Cyprus’ CytaMobile-Vodaphone network) using exactly
the same code at a low traffic hour, there were zero
successful birthday attacks in ≈ 40 attempts. Although
not a definite conclusion, this also hints that the network
infrastructure behaves differently to some extent when
roaming. Note that when Vodaphone was tested while
roaming, the timeout and NAT types remained the same.

An initial vision of this project was to derive and present a
matrix showing how much time (measured in Birthday Attack
attempts) is required for each European carrier to connect.
The main birthday attack attempts were made by choosing
random ports with Dutch carriers in the Netherlands. The
results of tableI, although not having outstanding results,
show that birthday attack and connectivity between carriers is
possible (especially if one phone is on WiFi, leading to a 100%
success rate which each birthday attack attempt achieving
connectivity); this is not the case as soon as at least one is
roaming. As soon as a carrier is roaming, no birthday attack
is successful.

Multiple attempts were made (with proven working soft-



Connection Initiation Timeout Session Timeout
LB(s) UB(s) Server Port Location Tunnel LB(s) UB(s) Server Port Location Tunnel

Lebara NL 120 121 2000 Echo TuD - 240 241 2000 Echo TuD -
Lyca NL 120 121 2000 Echo TuD - 120 121 2000 Echo TuD -

Odido NL - -
Vodaphone NL 302 303 2000 Echo TuD - 299 300 2000 Echo TuD -

KPN 120 121 2000 Echo TuD - 239 240 2000 Echo TuD -
Orange BG 58 59 2000 Echo TuD Odido 60 61 2000 Echo TuD Odido
Orange BG 59 60 2000 Echo TuD Lyca NL 57 58 2000 Echo TuD Lyca NL

Lyca BG - - 2000 Echo TuD Lyca NL 2000 Echo TuD Lyca NL
Telia NO 120 121 2000 Oslo airport -
Telia NO 5 6 2000 Echo TuD Lyca NL 300 301 2000 Echo TuD Lyca NL

MyCall NO 120 121 2001 Oslo airport -
MyCall NO 19 20 2001 Echo TuD Lyca NL 299 300 2001 Echo TuD Lyca NL

TABLE IV: Timeouts of various carriers in seconds. On the left side are timeouts for waiting for communication establishment
(i.e., the initial packet is sent, but no response has yet been received from the server). On the right side is the communication
timeout, i.e., communication is established, but no communication occurs. (UB=Upper Bound, LB= Lower Bound. The two-
letter code next to the carrier is the ISO country code.)

Provider MTU (BYTES) Allows Jumbo Frames? Area
T-Mobile
Lebara 4G 65507 Yes Echo Tu delft
Lyca 4G 1473 No Echo tu delft
Vodaphone 4G 1437 No Echo Tu Delft
KPN 4G 1445 No Echo Tu delft
Orange Belgium 4G 1472 No Spiti tou giorgou
Lyca Mobile Belgium 4G 42987 Yes Spiti tou giorgou Belgium
MyCall Norway 4G 65507 Yes Oslo Airport
Telia Norway 5G 65507 Yes Oslo Airport
Telia Norway 4G 65507 Yes Oslo Airport

TABLE V: The MTU of various carriers and whether they accept Jumbo frames at the location of testing

ware), with various different roaming carrier combinations,
including one of the two phones running on WiFi with no one
leading to a successful connection. However, as soon as both
phones are on local networks, there are successful attempts.

These experiments ran for ≈ 1 week, leading to no
successful connection between roaming carriers, hinting that
some roaming feature completely hinders the connectivity. No
conclusion is made on whether the connectivity is impossible,
but it is not possible with the current data in a reasonable
timeframe; thus, the vision of a cross-carrier time-to-connect
matrix is postponed.

These failures all occurred in Cyprus. It is not impossible
that roaming from Cyprus is the problem. Still, there is not
enough information on the precise behaviour of roaming to
either support or refute the claim that the Cypriot network is
the problem.

1) Roaming completely hinders the Birthday Attack: Let’s
take a best-case scenario for Telia Norway roaming from
Cyprus on a Samsung Galaxy A53 5G (SM-A536B/DS) where
the person roaming is the only one using the roaming tower
for the whole duration.

There are three significant variables, i.e.

• p ≈ 2.98: processing time
• l ≈ 79.20ms: average network latency Limassol to Oslo

[22]
• P = 64511: number of available ports, all ports except

the first 1024 are available

When they send a packet, each phone, i.e., phone A and
phone B, creates a NAT mapping (opens a port in the NAT);
those mappings are XA, XB , respectively. XA, XB , in this
case, expire every 5 seconds.

The algorithm tries different ports of the target’s NAT every
(1 + t)ms by sending a packet to that port. If the packet
originated from phone A, the port is YA; if it originated from
phone B, it is YB .

The algorithm aims to cause a collision while mappings
remain active, i.e., attempt (Xa, Ya) = (Yb, Xb) in a 5-second
window.

The probability of such collision is: P ((Xa, Ya) ==
(Yb, Xb)) =

1
645112 .

As mentioned, each mapping has a time-to-live of 5 seconds
minus the latency.

In that 5-second minus latency window, it can attempt Y =
5000
p ≈ 1678 ports.
Thus, the probability of a successful collision in a single

window is P (CollisionInWindowroaming) = Y
645112 =

1678
4161669121 = 0.0000004032.

A new window is created every l milliseconds, meaning that
worst case is 1

0.0000004032 = 2480159 windows are needed,
meaning (2480159∗ l) ms which is approximately 54.6hours.

On the contrary, if there was no roaming involved (still with
Telia Norway) there are again three significant variables, i.e.

• p ≈ 2.98: processing time
• l ≈ 23ms: average network latency of Telia Norge in

Norway [23]



• P = 64511: number of available ports remain the same
The probability of a single collision remains the same, but

the time-to-live of a message is larger (≈ 120 seconds); thus,
more attempts can be made in a single window. In that 120-
second minus latency window, it can attempt Y = 120000

p ≈
40269 ports.

The probability of a successful collision in a window thus
is P (CollisionInWindowlocal) =

40269
645112 = 0.00000967616.

In the worst case,≈ 103347 windows are needed, and since
a window is created every ≈ l milliseconds, then the worst
case time needed for a birthday attack on Telia Norge in their
local network in Norway is 103347 ∗ l = 39.6 minutes.

These simplified calculations of two best-case scenarios for
the time needed to penetrate the NAT while on the local
network or roaming demonstrate that roaming requires at least
82× more time than running it on the local network.

F. Improved Birthday Attack Evaluation and Findings

TALK about the new library etc and analyse the results
blabla

The evaluation results of 10 runs per carrier using the
improved Birthday attack are shown in table VI. The success
rate difference is shown in table ??

VII. DISCUSSION AND FUTURE WORK

This exploratory study on the inner behaviour of NATs
showed various interesting properties. First of all, no NAT
implementation is exactly the same, although carriers that
operate a mobile virtual network operator (MVNO) model
like Lebara Netherlands, which uses KPN’s network, have
an implementation exactly the same as KPN, hinting that
potentially they allow KPN to handle everything and route the
traffic to them. LycaMobile Netherlands, on the other hand,
implemented a different infrastructure even though they are
also using KPN’s infrastructure.

Birthday attacks are inherently unpredictable; even with
complete knowledge of a carrier’s NAT mapping function,
there is some randomness and outside influences that affect
the success of the attack. For example, attempting a birthday
attack during peak network usage hours will most probably
lead to a lower success rate than during peak hours. This is
due to the carriers experiencing congestion on their network
and employing some fairness protocols to allow all users to
be connected, thus limiting a user that requires high network
usage (one that performs a birthday attack, which constantly
opens up sockets in a “robotic“ way).

Another limiting factor is roaming. Roaming as explained
in section VI-E significantly hindered this research since
for reasons that have not yet been fully identified dims the
connectivity through birthday attack almost impossible.

The main takeaway from this research is that connectivity
through birthday attacks in a fully remote setting is possible in
principle, but very hard to fully quantify the success rate and
its reliability. There are so many factors that may jeopardize
it such as NAT type of carrier, combination of carriers, time
of the day, congestion of the network and roaming.

A. Future Work

VIII. CONCLUSION

APPENDIX

1) Orange Belgium:
2) LycaMobile Belgium:
3) Orange France:
4) SFR France:
5) Telia Norway:
6) MyCall Norway:
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