-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrag.py
75 lines (63 loc) · 2.48 KB
/
rag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
from dotenv import load_dotenv
import streamlit as st
from langchain_community.chat_models import GigaChat
from langchain.schema import ChatMessage
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings.gigachat import GigaChatEmbeddings
from langchain.schema import ChatMessage
from langchain.chains import RetrievalQA
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
load_dotenv()
GIGACHAT_API_KEY = os.environ.get('GIGACHAT_API_KEY')
#ui
st.title("Gigachat RAG Machine")
# инициалиация истории чата
if "messages" not in st.session_state:
st.session_state.messages = [
ChatMessage(
role="system",
content="You're a smart RAG bot, always ready to help a user find necessary information",
),
ChatMessage(role="assistant", content="Ask away!"),
]
# отображение сообщений чата из истории при повторном запуске приложения
for message in st.session_state.messages:
with st.chat_message(message.role):
st.markdown(message.content)
#текст сплиттер и эмбеддинги
loader = TextLoader("text.txt")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(documents)
embeddings_model = GigaChatEmbeddings(credentials=GIGACHAT_API_KEY, verify_ssl_certs=False)
db = FAISS.from_documents(documents, embeddings_model)
#логика чата
if prompt := st.chat_input():
chat = GigaChat(
credentials=GIGACHAT_API_KEY,
scope="GIGACHAT_API_PERS",
verify_ssl_certs=False,
stream=True,
profanity=True,
timeout=600,
verbose=False
)
message = ChatMessage(role="user", content=prompt)
st.session_state.messages.append(message)
with st.chat_message(message.role):
st.markdown(message.content)
qa_chain = RetrievalQA.from_chain_type(llm=chat, retriever=db.as_retriever())
response = qa_chain.invoke({"query": prompt})
otvet = response['result']
message = ChatMessage(role="assistant", content=otvet)
st.session_state.messages.append(message)
with st.chat_message(message.role):
message_placeholder = st.empty()
message_placeholder.markdown(message.content)
st.session_state.token = chat._client.token
chat._client.close()