-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGeneralRegexBound.thy
239 lines (193 loc) · 6.12 KB
/
GeneralRegexBound.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
theory GeneralRegexBound
imports "BasicIdentities"
begin
lemma size_geq1:
shows "rsize r \<ge> 1"
by (induct r) auto
definition RSEQ_set where
"RSEQ_set A n \<equiv> {RSEQ r1 r2 | r1 r2. r1 \<in> A \<and> r2 \<in> A \<and> rsize r1 + rsize r2 \<le> n}"
definition RSEQ_set_cartesian where
"RSEQ_set_cartesian A = {RSEQ r1 r2 | r1 r2. r1 \<in> A \<and> r2 \<in> A}"
definition RALT_set where
"RALT_set A n \<equiv> {RALTS rs | rs. set rs \<subseteq> A \<and> rsizes rs \<le> n}"
definition RALTs_set where
"RALTs_set A n \<equiv> {RALTS rs | rs. \<forall>r \<in> set rs. r \<in> A \<and> rsizes rs \<le> n}"
definition RNTIMES_set where
"RNTIMES_set A n \<equiv> {RNTIMES r m | m r. r \<in> A \<and> rsize r + m \<le> n}"
definition
"sizeNregex N \<equiv> {r. rsize r \<le> N}"
lemma sizenregex_induct1:
"sizeNregex (Suc n) = (({RZERO, RONE} \<union> {RCHAR c| c. True})
\<union> (RSTAR ` sizeNregex n)
\<union> (RSEQ_set (sizeNregex n) n)
\<union> (RALTs_set (sizeNregex n) n))
\<union> (RNTIMES_set (sizeNregex n) n)"
apply(auto)
apply(case_tac x)
apply(auto simp add: RSEQ_set_def)
using sizeNregex_def apply force
using sizeNregex_def apply auto[1]
apply (simp add: sizeNregex_def)
apply (simp add: sizeNregex_def)
apply (simp add: RALTs_set_def)
apply (metis imageI list.set_map member_le_sum_list order_trans)
apply (simp add: sizeNregex_def)
apply (simp add: sizeNregex_def)
apply (simp add: RNTIMES_set_def)
apply (simp add: sizeNregex_def)
using sizeNregex_def apply force
apply (simp add: sizeNregex_def)
apply (simp add: sizeNregex_def)
apply (simp add: sizeNregex_def)
apply (simp add: RALTs_set_def)
apply(simp add: sizeNregex_def)
apply(auto)
using ex_in_conv apply fastforce
apply (simp add: RNTIMES_set_def)
apply(simp add: sizeNregex_def)
by force
lemma s4:
"RSEQ_set A n \<subseteq> RSEQ_set_cartesian A"
using RSEQ_set_cartesian_def RSEQ_set_def by fastforce
lemma s5:
assumes "finite A"
shows "finite (RSEQ_set_cartesian A)"
using assms
apply(subgoal_tac "RSEQ_set_cartesian A = (\<lambda>(x1, x2). RSEQ x1 x2) ` (A \<times> A)")
apply simp
unfolding RSEQ_set_cartesian_def
apply(auto)
done
definition RALTs_set_length
where
"RALTs_set_length A n l \<equiv> {RALTS rs | rs. \<forall>r \<in> set rs. r \<in> A \<and> rsizes rs \<le> n \<and> length rs \<le> l}"
definition RALTs_set_length2
where
"RALTs_set_length2 A l \<equiv> {RALTS rs | rs. \<forall>r \<in> set rs. r \<in> A \<and> length rs \<le> l}"
definition set_length2
where
"set_length2 A l \<equiv> {rs. \<forall>r \<in> set rs. r \<in> A \<and> length rs \<le> l}"
lemma r000:
shows "RALTs_set_length A n l \<subseteq> RALTs_set_length2 A l"
apply(auto simp add: RALTs_set_length2_def RALTs_set_length_def)
done
lemma r02:
shows "set_length2 A 0 \<subseteq> {[]}"
apply(auto simp add: set_length2_def)
apply(case_tac x)
apply(auto)
done
lemma r03:
shows "set_length2 A (Suc n) \<subseteq>
{[]} \<union> (\<lambda>(h, t). h # t) ` (A \<times> (set_length2 A n))"
apply(auto simp add: set_length2_def)
apply(case_tac x)
apply(auto)
done
lemma r1:
assumes "finite A"
shows "finite (set_length2 A n)"
using assms
apply(induct n)
apply(rule finite_subset)
apply(rule r02)
apply(simp)
apply(rule finite_subset)
apply(rule r03)
apply(simp)
done
lemma size_sum_more_than_len:
shows "rsizes rs \<ge> length rs"
apply(induct rs)
apply simp
apply simp
apply(subgoal_tac "rsize a \<ge> 1")
apply linarith
using size_geq1 by auto
lemma sum_list_len:
shows "rsizes rs \<le> n \<Longrightarrow> length rs \<le> n"
by (meson order.trans size_sum_more_than_len)
lemma t2:
shows "RALTs_set A n \<subseteq> RALTs_set_length A n n"
unfolding RALTs_set_length_def RALTs_set_def
apply(auto)
using sum_list_len by blast
lemma s8_aux:
assumes "finite A"
shows "finite (RALTs_set_length A n n)"
proof -
have "finite A" by fact
then have "finite (set_length2 A n)"
by (simp add: r1)
moreover have "(RALTS ` (set_length2 A n)) = RALTs_set_length2 A n"
unfolding RALTs_set_length2_def set_length2_def
by (auto)
ultimately have "finite (RALTs_set_length2 A n)"
by (metis finite_imageI)
then show ?thesis
by (metis infinite_super r000)
qed
lemma char_finite:
shows "finite {RCHAR c |c. True}"
apply simp
apply(subgoal_tac "finite (RCHAR ` (UNIV::char set))")
prefer 2
apply simp
by (simp add: full_SetCompr_eq)
thm RNTIMES_set_def
lemma s9_aux0:
shows "RNTIMES_set (insert r A) n \<subseteq> RNTIMES_set A n \<union> (\<Union> i \<in> {..n}. {RNTIMES r i})"
apply(auto simp add: RNTIMES_set_def)
done
lemma s9_aux:
assumes "finite A"
shows "finite (RNTIMES_set A n)"
using assms
apply(induct A arbitrary: n)
apply(auto simp add: RNTIMES_set_def)[1]
apply(subgoal_tac "finite (RNTIMES_set F n \<union> (\<Union> i \<in> {..n}. {RNTIMES x i}))")
apply (metis finite_subset s9_aux0)
by blast
lemma finite_size_n:
shows "finite (sizeNregex n)"
apply(induct n)
apply(simp add: sizeNregex_def)
apply (metis (mono_tags, lifting) not_finite_existsD not_one_le_zero size_geq1)
apply(subst sizenregex_induct1)
apply(simp only: finite_Un)
apply(rule conjI)+
apply(simp)
using char_finite apply blast
apply(simp)
apply(rule finite_subset)
apply(rule s4)
apply(rule s5)
apply(simp)
apply(rule finite_subset)
apply(rule t2)
apply(rule s8_aux)
apply(simp)
by (simp add: s9_aux)
lemma three_easy_cases0:
shows "rsize (rders_simp RZERO s) \<le> Suc 0"
apply(induct s)
apply simp
apply simp
done
lemma three_easy_cases1:
shows "rsize (rders_simp RONE s) \<le> Suc 0"
apply(induct s)
apply simp
apply simp
using three_easy_cases0 by auto
lemma three_easy_casesC:
shows "rsize (rders_simp (RCHAR c) s) \<le> Suc 0"
apply(induct s)
apply simp
apply simp
apply(case_tac " a = c")
using three_easy_cases1 apply blast
apply simp
using three_easy_cases0 by force
unused_thms
end