-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathlsgan.py
321 lines (244 loc) · 12.4 KB
/
lsgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
"""
Code adjusted from https://gist.github.com/f0k/9b0bb51040719eeafec7eba473a9e79b
"""
from __future__ import (absolute_import, print_function)
import numpy as np
import theano
import theano.tensor as T
import lasagne
def rmsprop(cost, params, learning_rate, momentum=0.5, rescale=5.):
grads = T.grad(cost=cost, wrt=params)
running_square_ = [theano.shared(np.zeros_like(p.get_value(),dtype=p.dtype), broadcastable=p.broadcastable)
for p in params]
running_avg_ = [theano.shared(np.zeros_like(p.get_value(),dtype=p.dtype), broadcastable=p.broadcastable)
for p in params]
memory_ = [theano.shared(np.zeros_like(p.get_value(),dtype=p.dtype), broadcastable=p.broadcastable)
for p in params]
grad_norm = T.sqrt(sum(map(lambda x: T.sqr(x).sum(), grads)))
not_finite = T.or_(T.isnan(grad_norm), T.isinf(grad_norm))
grad_norm = T.sqrt(grad_norm)
scaling_num = rescale
scaling_den = T.maximum(rescale, grad_norm)
# Magic constants
combination_coeff = 0.9
minimum_grad = 1E-4
updates = []
for n, (param, grad) in enumerate(zip(params, grads)):
grad = T.switch(not_finite, 0.1 * param,
grad * (scaling_num / scaling_den))
old_square = running_square_[n]
new_square = combination_coeff * old_square + (
1. - combination_coeff) * T.sqr(grad)
old_avg = running_avg_[n]
new_avg = combination_coeff * old_avg + (
1. - combination_coeff) * grad
rms_grad = T.sqrt(new_square - new_avg ** 2)
rms_grad = T.maximum(rms_grad, minimum_grad)
memory = memory_[n]
update = momentum * memory - learning_rate * grad / rms_grad
update2 = momentum * momentum * memory - (
1 + momentum) * learning_rate * grad / rms_grad
updates.append((old_square, new_square))
updates.append((old_avg, new_avg))
updates.append((memory, update))
updates.append((param, param + update2))
return updates
def build_generator(input_var=None):
from lasagne.layers import InputLayer, ReshapeLayer, DenseLayer
try:
from lasagne.layers import TransposedConv2DLayer as Deconv2DLayer
except ImportError:
raise ImportError("Your Lasagne is too old. Try the bleeding-edge "
"version: http://lasagne.readthedocs.io/en/latest/"
"user/installation.html#bleeding-edge-version")
try:
from lasagne.layers.dnn import batch_norm_dnn as batch_norm
except ImportError:
from lasagne.layers import batch_norm
from lasagne.nonlinearities import sigmoid
# input: 100dim
layer = InputLayer(shape=(None, 100), input_var=input_var)
# fully-connected layer
layer = batch_norm(DenseLayer(layer, 1024))
# project and reshape
layer = batch_norm(DenseLayer(layer, 128*7*7))
layer = ReshapeLayer(layer, ([0], 128, 7, 7))
# two fractional-stride convolutions
layer = batch_norm(Deconv2DLayer(layer, 64, 5, stride=2, crop='same',
output_size=14))
layer = Deconv2DLayer(layer, 1, 5, stride=2, crop='same', output_size=28,
nonlinearity=sigmoid)
print ("Generator output:", layer.output_shape)
return layer
def build_critic(input_var=None):
from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer,
DenseLayer)
try:
from lasagne.layers.dnn import batch_norm_dnn as batch_norm
except ImportError:
from lasagne.layers import batch_norm
from lasagne.nonlinearities import LeakyRectify
lrelu = LeakyRectify(0.2)
# input: (None, 1, 28, 28)
layer = InputLayer(shape=(None, 1, 28, 28), input_var=input_var)
# two convolutions
layer = batch_norm(Conv2DLayer(layer, 64, 5, stride=2, pad='same',
nonlinearity=lrelu))
layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same',
nonlinearity=lrelu))
# fully-connected layer
layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu))
# output layer (linear)
layer = DenseLayer(layer, 1, nonlinearity=None)
print ("critic output:", layer.output_shape)
return layer
num_epochs=100
epochsize=100
batchsize=64
initial_eta=1e-4
class LSGAN(object):
def __init__(self, config):
self.verbose = config['verbose']
self.rank = config['rank']
self.size = config['size']
self.name = 'LeastSquare_GAN'
# data
from theanompi.models.data.mnist import MNIST_data
self.data = MNIST_data(self.verbose)
self.data.rawdata[0] = self.data.rawdata[0]/np.float32(255.)
self.data.rawdata[2] = self.data.rawdata[2]/np.float32(255.)
self.data.rawdata[5] = self.data.rawdata[5]/np.float32(255.)
self.data.batch_data(batchsize)
self.batch_size=batchsize
self.file_batch_size=batchsize
self.n_subb=self.file_batch_size//self.batch_size
# model
self.build_model()
self.params = self.critic_params #+self.generator_params
# training related
self.epoch=0
self.n_epochs=num_epochs
self.generator_updates = 0
self.critic_scores = []
self.generator_scores = []
self.c_list=[]
self.g_list=[]
self.current_info=None
self.init_view=False
def build_model(self):
rng=np.random.RandomState(1234)
lasagne.random.set_rng(rng)
# Prepare Theano variables for inputs and targets
self.noise_var = T.matrix('noise')
self.input_var = T.tensor4('inputs')
# Create neural network model
generator = build_generator(self.noise_var)
critic = build_critic(self.input_var)
# Create expression for passing real data through the critic
self.real_out = lasagne.layers.get_output(critic)
# Create expression for passing fake data through the critic
self.fake_out = lasagne.layers.get_output(critic,
lasagne.layers.get_output(generator))
# Create update expressions for training
self.generator_params = lasagne.layers.get_all_params(generator, trainable=True)
self.critic_params = lasagne.layers.get_all_params(critic, trainable=True)
self.generator = generator
self.critic = critic
def compile_iter_fns(self, *args, **kwargs):
# Create loss expressions to be minimized
# a, b, c = -1, 1, 0 # Equation (8) in the paper
a, b, c = 0, 1, 1 # Equation (9) in the paper
loss_gen = lasagne.objectives.squared_error(self.fake_out, c).mean()
# loss_gen = -1*self.fake_out.mean()
loss_critic = (lasagne.objectives.squared_error(self.real_out, b).mean() +
lasagne.objectives.squared_error(self.fake_out, a).mean())
# loss_critic = self.real_out.mean() - self.fake_out.mean()
self.shared_lr = theano.shared(lasagne.utils.floatX(initial_eta))
generator_updates = rmsprop(
loss_gen, self.generator_params, learning_rate=self.shared_lr)
critic_updates = rmsprop(
loss_critic, self.critic_params, learning_rate=self.shared_lr)
# Instantiate a symbolic noise generator to use for training
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
srng = RandomStreams(seed=np.random.randint(2147462579, size=6))
noise = srng.uniform((batchsize, 100))
# Compile functions performing a training step on a mini-batch (according
# to the updates dictionary) and returning the corresponding score:
print('Compiling...')
import time
start = time.time()
self.generator_train_fn = theano.function([], loss_gen,
givens={self.noise_var: noise},
updates=generator_updates)
self.critic_train_fn = theano.function([self.input_var],loss_critic,
givens={self.noise_var: noise},
updates=critic_updates)
# Compile another function generating some data
self.gen_fn = theano.function([self.noise_var],
lasagne.layers.get_output(self.generator,
deterministic=True))
self.val_fn = theano.function([self.input_var],
outputs=[loss_critic, loss_gen],
givens={self.noise_var: noise})
if self.verbose: print ('Compile time: %.3f s' % (time.time()-start))
def train_iter(self, count, recorder):
batches_train = self.data.batches_train
c_score_list = []
recorder.start()
inputs, targets = next(batches_train)
c_score = self.critic_train_fn(inputs)
c_score_list.append(c_score)
self.critic_scores.extend(c_score_list)
g_score = self.generator_train_fn()
self.generator_scores.append(g_score)
recorder.train_error(count, sum(c_score_list)/len(c_score_list), g_score)
recorder.end('calc')
def val_iter(self, count, recorder):
batches_val = self.data.batches_val
inputs, targets = next(batches_val)
c_score, g_score = self.val_fn(inputs)
recorder.val_error(count, c_score, g_score, 0) # print loss_critic, loss_gen and a 0 instead of cost, error and error_top_5
def reset_iter(self, *args, **kwargs):
pass
def print_info(self, recorder):
print('\nEpoch %d' % self.epoch)
g_=np.mean(self.generator_scores)
c_=np.mean(self.critic_scores)
self.g_list.extend([g_])
self.c_list.extend([c_])
print(" generator loss:\t\t{}".format(g_))
print(" critic loss:\t\t{}".format(c_))
self.critic_scores[:] = []
self.generator_scores[:] = []
samples = self.gen_fn(lasagne.utils.floatX(np.random.rand(42, 100)))
samples = samples.reshape(6, 7, 28, 28).transpose(0, 2, 1, 3).reshape(6*28, 7*28)
if self.init_view == False:
self.init_view = True
self.save_flag=False
recorder.plot_init(name='scores', save=self.save_flag) # if save=True then pause=False
recorder.plot_init(name='sample', save=self.save_flag)
recorder.plot(name='sample', image=samples, cmap='gray')
recorder.plot(name='scores', lines=[self.c_list,self.g_list], lw=2, save=self.save_flag) # if pause=True then save=False
def adjust_hyperp(self, epoch):
# After half the epochs, we start decaying the learn rate towards zero
if epoch >= num_epochs // 2:
progress = float(epoch) / num_epochs
self.shared_lr.set_value(lasagne.utils.floatX(initial_eta*2*(1 - progress)))
def cleanup(self):
pass
def save(self, path='./'):
import os
if not os.path.exists(path):
print('Creating folder: %s' % path)
os.makedirs(path)
np.savez(path+'%d_lsgan_mnist_gen.npz' % self.epoch, *lasagne.layers.get_all_param_values(self.generator))
np.savez(path+'%d_lsgan_mnist_crit.npz' % self.epoch, *lasagne.layers.get_all_param_values(self.critic))
def load(self, path_gen, path_cri):
with np.load(path_gen) as f:
param_values = [f['arr_%d' % i] for i in range(len(f.files))]
lasagne.layers.set_all_param_values(self.generator, param_values)
with np.load(path_cri) as f:
param_values = [f['arr_%d' % i] for i in range(len(f.files))]
lasagne.layers.set_all_param_values(self.critic, param_values)
if __name__ == '__main__':
raise RuntimeError('to be tested using test_model.py:\n$ python test_model.py lasagne_model_zoo.lsgan LSGAN')