@@ -502,28 +502,32 @@ def plot_acf(
502
502
) -> None :
503
503
"""
504
504
Plots the ACF of `ts`, highlighting it at lag `m`, with corresponding significance interval.
505
- This function uses the `Statsmodels module <https://github.com/ statsmodels/statsmodels>`_.
505
+ Uses :func:` statsmodels.tsa.stattools.acf` [1]_
506
506
507
507
Parameters
508
508
----------
509
- ts : TimeSeries
509
+ ts
510
510
The TimeSeries whose ACF should be plotted.
511
- m : int, optional
511
+ m
512
512
Optionally, a time lag to highlight on the plot.
513
- max_lag : int, default: 24
513
+ max_lag
514
514
The maximal lag order to consider.
515
- alpha : float, default: 0.05
515
+ alpha
516
516
The confidence interval to display.
517
- bartlett_confint : bool, default: True
517
+ bartlett_confint
518
518
The boolean value indicating whether the confidence interval should be
519
519
calculated using Bartlett's formula. If set to True, the confidence interval
520
520
can be used in the model identification stage for fitting ARIMA models.
521
521
If set to False, the confidence interval can be used to test for randomness
522
522
(i.e. there is no time dependence in the data) of the data.
523
- fig_size : tuple of int, default: (10, 5)
523
+ fig_size
524
524
The size of the figure to be displayed.
525
- axis : plt.axis, optional
525
+ axis
526
526
Optionally, an axis object to plot the ACF on.
527
+
528
+ References
529
+ ----------
530
+ .. [1] https://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.acf.html
527
531
"""
528
532
529
533
ts ._assert_univariate ()
@@ -584,17 +588,17 @@ def plot_pacf(
584
588
) -> None :
585
589
"""
586
590
Plots the Partial ACF of `ts`, highlighting it at lag `m`, with corresponding significance interval.
587
- This function uses the `Statsmodels module <https://github.com/ statsmodels/statsmodels>`_.
591
+ Uses :func:` statsmodels.tsa.stattools.pacf` [1]_
588
592
589
593
Parameters
590
594
----------
591
- ts : TimeSeries
595
+ ts
592
596
The TimeSeries whose ACF should be plotted.
593
- m : int, optional
597
+ m
594
598
Optionally, a time lag to highlight on the plot.
595
- max_lag : int, default: 24
599
+ max_lag
596
600
The maximal lag order to consider.
597
- method : str, default: "ywadjusted"
601
+ method
598
602
The method to be used for the PACF calculation.
599
603
- | "yw" or "ywadjusted" : Yule-Walker with sample-size adjustment in
600
604
| denominator for acovf. Default.
@@ -608,12 +612,16 @@ def plot_pacf(
608
612
correction.
609
613
- "ldb" or "ldbiased" : Levinson-Durbin recursion without bias
610
614
correction.
611
- alpha : float, default: 0.05
615
+ alpha
612
616
The confidence interval to display.
613
- fig_size : tuple of int, default: (10, 5)
617
+ fig_size
614
618
The size of the figure to be displayed.
615
- axis : plt.axis, optional
619
+ axis
616
620
Optionally, an axis object to plot the ACF on.
621
+
622
+ References
623
+ ----------
624
+ .. [1] https://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.pacf.html
617
625
"""
618
626
619
627
ts ._assert_univariate ()
@@ -759,7 +767,7 @@ def plot_residuals_analysis(
759
767
Univariate TimeSeries instance representing residuals.
760
768
num_bins
761
769
Optionally, an integer value determining the number of bins in the histogram.
762
- fill_nan:
770
+ fill_nan
763
771
A boolean value indicating whether NaN values should be filled in the residuals.
764
772
"""
765
773
0 commit comments