-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgenerator_model.py
124 lines (87 loc) · 4.13 KB
/
generator_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib.rnn import LSTMCell, MultiRNNCell, DropoutWrapper
from tensorflow.contrib import seq2seq
class Question_Generator(object):
def __init__(self):
self.input_dim = input_dim
self.start_index = tf.placeholder()
self.stop_index = tf.placeholder()
self.question = tf.placeholder()
with tf.name_scope('word-repres'):
self.passage_repres = tf.placeholder(tf.float32, [None,None,None])
if with_char and char_vocab is not None:
self.passage_char_lengths = tf.placeholder(tf.float32, [None,None])
self.passage_chars = tf.placeholder(tf.int32, [None, None, None]) # [batch_size, passage_len, p_char_len]
input_shape = tf.shape(self.answer_chars)
batch_size = input_shape[0]
a_char_len = input_shape[2]
input_shape = tf.shape(self.passage_chars)
passage_len = input_shape[1]
p_char_len = input_shape[2]
char_dim = char_vocab.word_dim
self.char_embedding = tf.get_variable("char_embedding", initializer=tf.constant(char_vocab.word_vecs),
dtype=tf.float32)
passage_char_repres = tf.nn.embedding_lookup(self.char_embedding, self.passage_chars) # [batch_size, passage_len, p_char_len, char_dim]
passage_char_repres = tf.reshape(passage_char_repres, shape=[-1, p_char_len, char_dim])
passage_char_lengths = tf.reshape(self.passage_char_lengths, [-1])
with tf.variable_scope('char_lstm'):
# lstm cell
char_lstm_cell = LSTMCell(char_lstm_dim)
# dropout
if is_training: char_lstm_cell = DropoutWrapper(char_lstm_cell,
output_keep_prob=(1 - dropout_rate))
char_lstm_cell = MultiRNNCell([char_lstm_cell])
tf.get_variable_scope().reuse_variables()
# passage representation
passage_char_outputs = tf.nn.dynamic_rnn(char_lstm_cell, passage_char_repres,
sequence_length=passage_char_lengths,dtype=tf.float32)[0] # [batch_size*answer_len, q_char_len, char_lstm_dim]
passage_char_outputs = passage_char_outputs[:,-1,:]
passage_char_outputs = tf.reshape(passage_char_outputs, [batch_size, passage_len, char_lstm_dim])
passage_repres.append(passage_char_outputs)
self.input_dim += char_lstm_dim
self.passage_repres = tf.concat(2, self.passage_repres) # [batch_size, passage_len, dim]
with tf,name_scope('encoder-1'):
encoder_cell_f = LSTMCell(hidden_dim)
encoder_cell_b = LSTMCell(hidden_dim)
encoder_ouputs , _ = tf.nn.bidirectional_dynamic_rnn(encoder_cell_f, encoder_cell_b, self.passage_repres)
h_d = tf.concat(encoder_ouputs, axis =2)
with tf.name_scope('answer-encoding'):
unstacked_h_d = tf.unstack(h_d)
h_a_ = []
for i in range(len(unstacked_h_d)):
temp = unstacked_h_d[i]
h_a_.append(temp[start_index[i],stop_index[i]])
answer_encoder_f = LSTMCell(hidden_dim)
answer_encoder_b = LSTMCell(hidden_dim)
h_a , _ = tf.nn.bidirectional_dynamic_rnn(answer_encoder_f,answer_encoder_b,inputs = tf.stack(h_a_))
h_a_argmax = tf.argmax(h_a,2)
with tf.name_scope('decoder'):
cascading_cell_1 = LSTMCell(hidden_dim)
cascading_cell_2 = LSTMCell(hidden_dim)
def cascading_cells_condition(t,,state, tensor_):
################POINTER DECODER###############
with tf.variable_scope('weights-pointer'):
W_1 = tf.get_variable()
W_2 = tf.get_variable()
b_1 = tf.get_variable()
b_2 = tf.get_variable()
temp_input = tf.concat(h_d_i,h_a_argmax,cascading_cell_1_output)
v_t = tf.matmul((tf.matmul(temp_input,W_1)+b_1),W_2) + b_2
alpha_t =
################GENERATIVE DECODER###############
with tf.variable_scope('weights-generator'):
W_1_g = tf.get_variable()
W_2_g = tf.get_variable()
b_1_g = tf.get_variable()
b_2_g = tf.get_variable()
t +=1
return t,state,tensor_
with tf.variable_scope('cascading-cells'):
tensor_ = tf.TensorArray(dtype = tf.float32, size = hidden_dim)
condition = lambda p,q,r,s: tf.less(p, )
body = lambda p,q,r,s: cascading_cells_condition(p,q,r,s)
t = tf.constant(0)
cascading_loop = tf.while_loop(cond =condition , body = body,
loop_vars = (t, ))
with tf.name_scope('predictions'):