-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
executable file
·193 lines (160 loc) · 6.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import sys
import os
import time
import timeit
import logging
import signal
from arguments import parser
import torch
import gym
import matplotlib as mpl
# mpl.use("macOSX")
import matplotlib.pyplot as plt
from baselines.common.vec_env import VecNormalize
from baselines.logger import HumanOutputFormat
from envs.multigrid import *
from envs.multigrid.adversarial import *
from envs.minihack.adversarial import *
from envs.runners.adversarial_runner import AdversarialRunner
from util import make_agent, FileWriter, safe_checkpoint, create_parallel_env
from eval import Evaluator
if __name__ == '__main__':
os.environ["OMP_NUM_THREADS"] = "1"
args = parser.parse_args()
# === Configure logging ===
if args.xpid is None:
args.xpid = "lr-%s" % time.strftime("%Y%m%d-%H%M%S")
log_dir = os.path.expandvars(os.path.expanduser(args.log_dir))
filewriter = FileWriter(
xpid=args.xpid, xp_args=args.__dict__, rootdir=log_dir
)
screenshot_dir = os.path.join(log_dir, args.xpid, 'screenshots')
if not os.path.exists(screenshot_dir):
os.makedirs(screenshot_dir, exist_ok=True)
def log_stats(stats):
filewriter.log(stats)
if args.verbose:
HumanOutputFormat(sys.stdout).writekvs(stats)
if args.verbose:
logging.getLogger().setLevel(logging.INFO)
else:
logging.disable(logging.CRITICAL)
# === Determine device ====
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda:0" if args.cuda else "cpu")
if 'cuda' in device.type:
torch.backends.cudnn.benchmark = True
print('Using CUDA\n')
# === Create parallel envs ===
venv, ued_venv = create_parallel_env(args)
is_training_env = args.ued_algo in ['minimax', 'paired', 'flexible_paired']
is_paired = args.ued_algo in ['paired', 'flexible_paired']
agent = make_agent(name='agent', env=venv, args=args, device=device)
adversary_agent, adversary_env = None, None
if is_paired:
adversary_agent = make_agent(name='adversary_agent', env=venv, args=args, device=device)
if is_training_env:
adversary_env = make_agent(name='adversary_env', env=venv, args=args, device=device)
# === Signal handler ===
def signal_handler(sig, frame):
venv.close()
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
# === Create runner ===
train_runner = AdversarialRunner(
args=args,
agent=agent,
venv=venv,
ued_venv=ued_venv,
adversary_agent=adversary_agent,
adversary_env=adversary_env,
train=True,
device=device)
# === Configure checkpointing ===
timer = timeit.default_timer
last_checkpoint_time = None
initial_update_count = 0
last_logged_update_at_restart = -1
checkpoint_path = os.path.expandvars(
os.path.expanduser("%s/%s/%s" % (log_dir, args.xpid, "model.tar"))
)
def checkpoint(index=None):
if args.disable_checkpoint:
return
safe_checkpoint({'runner_state_dict': train_runner.state_dict()},
checkpoint_path,
index=index,
archive_interval=args.archive_interval)
logging.info("Saved checkpoint to %s", checkpoint_path)
# === Load checkpoint ===
if args.checkpoint and os.path.exists(checkpoint_path):
checkpoint_states = torch.load(checkpoint_path)
last_logged_update_at_restart = filewriter.latest_tick() # ticks are 0-indexed updates
train_runner.load_state_dict(checkpoint_states['runner_state_dict'])
initial_update_count = train_runner.num_updates
logging.info(f"Resuming preempted job after {initial_update_count} updates\n") # 0-indexed next update
# Set up Evaluator
evaluator = None
if args.test_env_names:
test_envs = args.test_env_names.split(',')
evaluator = Evaluator(
test_envs,
num_processes=args.test_num_processes,
num_episodes=args.test_num_episodes,
device=device)
# === Train ===
update_start_time = timer()
num_updates = int(args.num_env_steps) // args.num_steps // args.num_processes
steps_previous = 0
for j in range(initial_update_count, num_updates):
stats = train_runner.run()
# === Perform logging ===
if train_runner.num_updates <= last_logged_update_at_restart:
continue
log = (j % args.log_interval == 0) or j == num_updates - 1
save_screenshot = \
args.screenshot_interval > 0 and \
(j % args.screenshot_interval == 0)
if log:
# Eval
test_stats = {}
if evaluator is not None and (j % args.test_interval == 0 or j == num_updates - 1):
test_stats = evaluator.evaluate(train_runner.agents['agent'])
stats.update(test_stats)
else:
stats.update({k: None for k in evaluator.stats_keys})
update_end_time = timer()
num_incremental_updates = 1 if j == 0 else args.log_interval
sps = num_incremental_updates*(args.num_processes * args.num_steps) / (update_end_time - update_start_time)
update_start_time = update_end_time
stats.update({'sps': sps})
stats.update(test_stats)
log_stats(stats)
if last_checkpoint_time is None:
last_checkpoint_time = timer()
if j == num_updates - 1 or \
(args.save_interval > 0 and timer() - last_checkpoint_time > args.save_interval * 60):
checkpoint(train_runner.num_updates)
last_checkpoint_time = timer()
logging.info(f"\nSaved checkpoint after update {j + 1}")
elif train_runner.num_updates > 0 and args.archive_interval > 0 \
and train_runner.num_updates % args.archive_interval == 0:
checkpoint(train_runner.num_updates)
last_checkpoint_time = timer()
logging.info(f"\nSaved checkpoint after update {j + 1}")
if save_screenshot:
venv.reset_agent()
images = venv.get_images()
plt.axis('off')
plt.imshow(images[0])
plt.savefig(os.path.join(screenshot_dir, f'update_{j}.png'), bbox_inches='tight')
plt.close()
if args.env_name.startswith('MiniHack'):
# ASCII obs
with open(os.path.join(screenshot_dir, f'update_{j}.txt'), 'w+') as fout:
fout.write(venv.get_grid_str())
# des file
with open(os.path.join(screenshot_dir, f'update_{j}.des'), 'w+') as fout:
fout.write(venv.get_des_file())
evaluator.close()
venv.close()