-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
660 lines (567 loc) · 28.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
import os
import logging
import numpy as np
import torch
import torchvision.transforms as transforms
import torch.utils.data as data
import random
import copy
from collections import defaultdict
from sklearn.metrics import confusion_matrix
from datasets import CIFAR100_truncated
import torch.nn as nn
import random
from constants import *
import copy
from collections import OrderedDict, defaultdict
import torch.optim as optim
import torch, torch.nn as nn, torch.nn.functional as F
# from pypapi import events, papi_high as high
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
cls_coarse = np.array([
4, 1, 14, 8, 0, 6, 7, 7, 18, 3,
3, 14, 9, 18, 7, 11, 3, 9, 7, 11,
6, 11, 5, 10, 7, 6, 13, 15, 3, 15,
0, 11, 1, 10, 12, 14, 16, 9, 11, 5,
5, 19, 8, 8, 15, 13, 14, 17, 18, 10,
16, 4, 17, 4, 2, 0, 17, 4, 18, 17,
10, 3, 2, 12, 12, 16, 12, 1, 9, 19,
2, 10, 0, 1, 16, 12, 9, 13, 15, 13,
16, 19, 2, 4, 6, 19, 5, 5, 8, 19,
18, 1, 2, 15, 6, 0, 17, 8, 14, 13
])
def fine_to_coarse(fine_label,args):
label_np = fine_label.cpu().detach().numpy()
label_change = np.zeros_like(label_np)
for i in range(label_change.shape[0]):
label_change[i]= coarse_labels[label_np[i]]
return torch.Tensor(label_change)
### MarginLoss with trainable class separation margin beta. Runs on Mini-batches as well.
def compute_accuracy_our(global_model,data_loader_dict,args):
test_results = defaultdict(lambda: defaultdict(list))
for net_id in range(args.n_parties):
global_model.eval()
if net_id not in data_loader_dict.keys():
continue
test_dl_local = data_loader_dict[net_id]['test_dl_local']
# traindata_cls_count = data_loader_dict[net_id]['traindata_cls_count']
test_correct, test_total, test_avg_loss = compute_accuracy_loss_our(global_model, test_dl_local, device=args.device,args = args)
test_results[net_id]['loss'] = test_avg_loss
test_results[net_id]['correct'] = test_correct
test_results[net_id]['total'] = test_total
global_model.cluster_size = {i:0 for i in range(args.key_prompt)}
#### global performance
test_total_correct = sum([val['correct'] for val in test_results.values()])
test_total_samples = sum([val['total'] for val in test_results.values()])
test_avg_loss = np.mean([val['loss'] for val in test_results.values()])
test_avg_acc = test_total_correct / test_total_samples
### local performance
local_mean_acc = np.mean([val['correct']/val['total'] for val in test_results.values()])
local_min_acc = np.min([val['correct']/val['total'] for val in test_results.values()])
return test_results, test_avg_loss, test_avg_acc, local_mean_acc,local_min_acc
def compute_accuracy_loss_our(model, dataloader, device="cpu",prototype = None,args=None):
was_training = False
if model.training:
model.eval()
was_training = True
true_labels_list, pred_labels_list = np.array([]), np.array([])
criterion = nn.CrossEntropyLoss().to(device)
model.to(device)
if type(dataloader) == type([1]):
pass
else:
dataloader = [dataloader]
correct, total, total_loss, batch_count = 0, 0, 0, 0
with torch.no_grad():
for tmp in dataloader:
for batch_idx, (x, target) in enumerate(tmp):
x, target = x.to(device), target.to(device,dtype=torch.int64)
output = model(x)
out = output['logits']
_, pred_label = torch.max(out.data, 1)
loss = criterion(out, target)
correct += (pred_label == target.data).sum().item()
total_loss += loss.item()
batch_count += 1
total += x.data.size()[0]
if device == "cpu":
pred_labels_list = np.append(pred_labels_list, pred_label.numpy())
true_labels_list = np.append(true_labels_list, target.data.numpy())
else:
pred_labels_list = np.append(pred_labels_list, pred_label.cpu().numpy())
true_labels_list = np.append(true_labels_list, target.data.cpu().numpy())
if was_training:
model.train()
return correct, total, total_loss/batch_count
def compute_accuracy_simple_our(model, dataloader, get_confusion_matrix=False, args = None):
was_training = False
if model.training:
model.eval()
was_training = True
true_labels_list, pred_labels_list = np.array([]), np.array([])
if type(dataloader) == type([1]):
pass
else:
dataloader = [dataloader]
correct, total = 0, 0
with torch.no_grad():
for tmp in dataloader:
for batch_idx, (x, target) in enumerate(tmp):
x, target = x.to(args.device), target.to(args.device,dtype=torch.int64)
output = model(x)
out = output['logits']
_, pred_label = torch.max(out.data, 1)
total += x.data.size()[0]
correct += (pred_label == target.data).sum().item()
if args.device == "cpu":
pred_labels_list = np.append(pred_labels_list, pred_label.numpy())
true_labels_list = np.append(true_labels_list, target.data.numpy())
else:
pred_labels_list = np.append(pred_labels_list, pred_label.cpu().numpy())
true_labels_list = np.append(true_labels_list, target.data.cpu().numpy())
if get_confusion_matrix:
conf_matrix = confusion_matrix(true_labels_list, pred_labels_list)
if was_training:
model.train()
if get_confusion_matrix:
return correct/float(total), conf_matrix
return correct/float(total)
def aggregation_func(keys_dict,global_para,selected,fed_avg_freqs,group_ratio,args):
unique_dict = {}
# unique_dict['prompt_keys'] = copy.deepcopy(global_para['prompt_keys'])
for idx,r in enumerate(selected):
net_para = keys_dict[r]
## momentum key ##
if args.all_moment:
if idx == 0:
for key in net_para:
if 'prompt_embeddings' in key or 'prompt_keys' in key :
unique_dict[key] = copy.deepcopy(global_para[key])
if ('head' in key or 'prompt_common' in key or 'running_mean' in key) and ('prompt_common_g' not in key) :
global_para[key] = copy.deepcopy(net_para[key]) * fed_avg_freqs[idx]
elif ( 'prompt_keys' in key ) and group_ratio is not None:
for ii, gs in enumerate(group_ratio[r].keys()):
global_para[key][ii:ii+1] = net_para[key][ii:ii+1]*group_ratio[r][gs]
elif ('prompt_embeddings' in key) and group_ratio is not None:
global_para[key] = net_para[key]*group_ratio[r][int(key.split('.')[-1])]
else:
for key in net_para:
if ('head' in key or 'prompt_common' in key or 'running_mean' in key) and ('prompt_common_g' not in key):
global_para[key] += copy.deepcopy(net_para[key]) * fed_avg_freqs[idx]
elif ( 'prompt_keys' in key ) and group_ratio is not None:
for ii, gs in enumerate(group_ratio[r].keys()):
global_para[key][ii:ii+1] += net_para[key][ii:ii+1]*group_ratio[r][gs]
elif ('prompt_embeddings' in key) and group_ratio is not None:
global_para[key] = net_para[key]*group_ratio[r][int(key.split('.')[-1])]
else:
if idx == 0:
for key in net_para:
if 'prompt_embeddings' in key or 'prompt_keys' in key :
unique_dict[key] = copy.deepcopy(global_para[key])
if ('head' in key or 'prompt_embeddings' in key or 'prompt_common' in key or 'running_mean' in key) and ('prompt_common_g' not in key) :
global_para[key] = copy.deepcopy(net_para[key]) * fed_avg_freqs[idx]
elif ( 'prompt_keys' in key ) and group_ratio is not None:
for ii, gs in enumerate(group_ratio[r].keys()):
global_para[key][ii:ii+1] = net_para[key][ii:ii+1]*group_ratio[r][gs]
else:
# or 'prompt_embeddings' in key
for key in net_para:
if ('head' in key or 'prompt_embeddings' in key or 'prompt_common' in key or 'running_mean' in key) and ('prompt_common_g' not in key):
global_para[key] += copy.deepcopy(net_para[key]) * fed_avg_freqs[idx]
elif ( 'prompt_keys' in key ) and group_ratio is not None:
for ii, gs in enumerate(group_ratio[r].keys()):
global_para[key][ii:ii+1] += net_para[key][ii:ii+1]*group_ratio[r][gs]
for key in unique_dict.keys():
#### momentum
if 'prompt_embeddings' in key:
global_para[key] = args.moment_p*unique_dict[key] + (1-args.moment_p)*global_para[key]
if 'prompt_keys' in key :
global_para[key] = args.moment*unique_dict[key] + (1-args.moment)*global_para[key]
return global_para
def group_ratio_func(keys_dict,selected):
group_ratio = {}
group_total = {}
for r in selected:
cluster_r = keys_dict[r]['cluster_size']
for key in cluster_r.keys():
if key in group_total:
group_total[key] += cluster_r[key]
else:
group_total[key] = cluster_r[key]
for r in selected:
group_ratio[r] = {}
cluster_r = keys_dict[r]['cluster_size']
for key,val in cluster_r.items():
if group_total[key] <= 50:
group_ratio[r][key] = 1/len(selected)
else:
group_ratio[r][key] = val/group_total[key]
return group_ratio
def network_training_base(net,optimizer,args,train_dataloader,test_dataloader):
criterion = nn.CrossEntropyLoss().to(args.device)
cnt = 0
for epoch in range(args.epochs):
epoch_loss_collector = []
for batch_idx, (x, target,_) in enumerate(train_dataloader):
x, target = x.to(args.device), target.to(args.device)
optimizer.zero_grad()
target = target.long()
output = net(x)
out = output['logits']
loss = criterion(out, target)
epoch_loss_collector.append(loss.item())
loss.backward()
optimizer.step()
cnt += 1
if batch_idx % 40 == 0:
print('Training loss is {}'.format(sum(epoch_loss_collector) / len(epoch_loss_collector)))
epoch_loss_collector = []
# if (epoch+1) % 3 == 0:
# test_acc, conf_matrix = compute_accuracy_simple_our(net, test_dataloader, get_confusion_matrix=True,args = args)
# print('###### The Test ACC is {}'.format(test_acc))
return net
def train_local_twostage(net,args,param_dict):
train_dataloader = param_dict['train_dataloader']
test_dataloader = param_dict['test_dataloader']
dict_loss = param_dict['dict_loss']
embedding_dict = param_dict['embedding_dict']
round = param_dict['round']
lr = args.lr
net.train()
net.selection = False
optimizer = optim.SGD([p for k,p in net.named_parameters() if p.requires_grad and ('head' in k or 'common' in k )], lr=lr, momentum=args.rho, weight_decay=args.reg)
net = network_training_base(net,optimizer,args,train_dataloader,test_dataloader)
net.selection = True
net.train()
optimizer = optim.SGD([p for k,p in net.named_parameters() if p.requires_grad and 'prompt_keys_pr' not in k and 'prompt_common_g' not in k and 'common' not in k ], lr=lr, momentum=args.rho, weight_decay=args.reg)
criterion = nn.CrossEntropyLoss().to(args.device)
cnt = 0
for epoch in range(args.epochs):
epoch_loss_collector = []
epoch_loss_collector2 = []
for batch_idx, (x, target,index) in enumerate(train_dataloader):
x, target = x.to(args.device), target.to(args.device)
optimizer.zero_grad()
target = target.long()
output = net(x,index,embedding_dict)
out = output['logits']
if out.shape[0] != target.shape[0]:
target = torch.cat([target]*net.topk,dim=0)
loss = criterion(out, target)
if args.avg_key and epoch <= args.keyepoch:
reduced_sim = output['reduced_sim']
loss += reduced_sim
epoch_loss_collector2.append(reduced_sim.item())
# #
epoch_loss_collector.append(loss.item())
loss.backward()
optimizer.step()
cnt += 1
if batch_idx % 40 == 0:
if args.avg_key and epoch <= args.keyepoch:
print('Key loss is {}'.format(sum(epoch_loss_collector2) / len(epoch_loss_collector2)))
print('Training loss is {}'.format(sum(epoch_loss_collector) / len(epoch_loss_collector)))
dict_loss["train/step"] = cnt
dict_loss["train/train_loss"] = sum(epoch_loss_collector) / len(epoch_loss_collector)
epoch_loss_collector = []
# if (epoch+1) % 3 == 0:
### do validation if needed
# test_acc, conf_matrix = compute_accuracy_simple_our(net, test_dataloader, get_confusion_matrix=True,args = args)
# print('###### The Test ACC is {}'.format(test_acc))
# dict_loss["val/step"] = epoch
# dict_loss["val/test_acc_epoch"] = test_acc
return output['embedding_dict']
def mkdirs(dirpath):
try:
os.makedirs(dirpath)
except Exception as _:
pass
def save_promptparams(nets):
nets_list = {}
for client in nets.keys():
nets_list[client] = {k: v for k, v in nets[client].state_dict().items() if 'prompt' in k}
return nets_list
def load_cifar100_data(datadir):
transform = transforms.Compose([transforms.ToTensor()])
cifar100_train_ds = CIFAR100_truncated(datadir, train=True, download=True, transform=transform)
cifar100_test_ds = CIFAR100_truncated(datadir, train=False, download=True, transform=transform)
X_train, y_train = cifar100_train_ds.data, cifar100_train_ds.target
X_test, y_test = cifar100_test_ds.data, cifar100_test_ds.target
return (X_train, y_train, X_test, y_test)
def record_net_data_stats(y_train, net_dataidx_map, logdir=None):
net_cls_counts = {}
for net_i, dataidx in net_dataidx_map.items():
unq, unq_cnt = np.unique(y_train[dataidx], return_counts=True)
tmp = {unq[i]: unq_cnt[i] for i in range(len(unq))}
net_cls_counts[net_i] = tmp
if logdir != None:
logger.info('Data statistics: %s' % str(net_cls_counts))
return net_cls_counts
def renormalize(weights, index):
"""
:param weights: vector of non negative weights summing to 1.
:type weights: numpy.array
:param index: index of the weight to remove
:type index: int
"""
renormalized_weights = np.delete(weights, index)
renormalized_weights /= renormalized_weights.sum()
return renormalized_weights
# return protos
def fine_to_coarse(fine_label):
label_np = fine_label.cpu().detach().numpy()
label_change = np.zeros_like(label_np)
coarse_labels = \
np.array([
4, 1, 14, 8, 0, 6, 7, 7, 18, 3,
3, 14, 9, 18, 7, 11, 3, 9, 7, 11,
6, 11, 5, 10, 7, 6, 13, 15, 3, 15,
0, 11, 1, 10, 12, 14, 16, 9, 11, 5,
5, 19, 8, 8, 15, 13, 14, 17, 18, 10,
16, 4, 17, 4, 2, 0, 17, 4, 18, 17,
10, 3, 2, 12, 12, 16, 12, 1, 9, 19,
2, 10, 0, 1, 16, 12, 9, 13, 15, 13,
16, 19, 2, 4, 6, 19, 5, 5, 8, 19,
18, 1, 2, 15, 6, 0, 17, 8, 14, 13
])
for i in range(label_change.shape[0]):
label_change[i]= coarse_labels[label_np[i]]
return label_change
def partition_data(dataset, datadir, partition, n_parties, beta=0.4, logdir=None,args= None):
if dataset == 'cifar100':
X_train, y_train, X_test, y_test = load_cifar100_data(datadir)
y = np.concatenate([y_train, y_test], axis=0)
n_train = y_train.shape[0]
n_test = y_test.shape[0]
if partition == "noniid-labeluni":
if "cifar100" in dataset:
num = args.cls_num
if "cifar100" in dataset:
K = 100
else:
assert False
print("Choose Dataset in readme.")
# -------------------------------------------#
# Divide classes + num samples for each user #
# -------------------------------------------#
assert (num * n_parties) % K == 0, "equal classes appearance is needed"
count_per_class = (num * n_parties) // K
class_dict = {}
for i in range(K):
# sampling alpha_i_c
probs = np.random.uniform(0.4, 0.6, size=count_per_class)
# normalizing
probs_norm = (probs / probs.sum()).tolist()
class_dict[i] = {'count': count_per_class, 'prob': probs_norm}
# -------------------------------------#
# Assign each client with data indexes #
# -------------------------------------#
class_partitions = defaultdict(list)
for i in range(n_parties):
c = []
for _ in range(num):
class_counts = [class_dict[i]['count'] for i in range(K)]
max_class_counts = np.where(np.array(class_counts) == max(class_counts))[0]
c.append(np.random.choice(max_class_counts))
class_dict[c[-1]]['count'] -= 1
class_partitions['class'].append(c)
class_partitions['prob'].append([class_dict[i]['prob'].pop() for i in c])
# -------------------------- #
# Create class index mapping #
# -------------------------- #
data_class_idx_train = {i: np.where(y_train == i)[0] for i in range(K)}
data_class_idx_test = {i: np.where(y_test == i)[0] for i in range(K)}
num_samples_train = {i: len(data_class_idx_train[i]) for i in range(K)}
num_samples_test = {i: len(data_class_idx_test[i]) for i in range(K)}
# --------- #
# Shuffling #
# --------- #
for data_idx in data_class_idx_train.values():
random.shuffle(data_idx)
for data_idx in data_class_idx_test.values():
random.shuffle(data_idx)
# ------------------------------ #
# Assigning samples to each user #
# ------------------------------ #
net_dataidx_map_train ={i:np.ndarray(0,dtype=np.int64) for i in range(n_parties)}
net_dataidx_map_test ={i:np.ndarray(0,dtype=np.int64) for i in range(n_parties)}
for usr_i in range(n_parties):
for c, p in zip(class_partitions['class'][usr_i], class_partitions['prob'][usr_i]):
end_idx_train = int(num_samples_train[c] * p)
end_idx_test = int(num_samples_test[c] * p)
net_dataidx_map_train[usr_i] = np.append(net_dataidx_map_train[usr_i], data_class_idx_train[c][:end_idx_train])
net_dataidx_map_test[usr_i] = np.append(net_dataidx_map_test[usr_i], data_class_idx_test[c][:end_idx_test])
data_class_idx_train[c] = data_class_idx_train[c][end_idx_train:]
data_class_idx_test[c] = data_class_idx_test[c][end_idx_test:]
traindata_cls_counts = record_net_data_stats(y_train, net_dataidx_map_train, logdir)
testdata_cls_counts = record_net_data_stats(y_test, net_dataidx_map_test, logdir)
return (X_train, y_train, X_test, y_test, net_dataidx_map_train, net_dataidx_map_test, traindata_cls_counts, testdata_cls_counts)
def compute_accuracy(model, dataloader, get_confusion_matrix=False, device="cpu",args = None):
was_training = False
if model.training:
model.eval()
was_training = True
true_labels_list, pred_labels_list = np.array([]), np.array([])
if type(dataloader) == type([1]):
pass
else:
dataloader = [dataloader]
correct, total = 0, 0
with torch.no_grad():
for tmp in dataloader:
for batch_idx, (x, target) in enumerate(tmp):
x, target = x.to(device), target.to(device,dtype=torch.int64)
if args is not None and args.uppper_coarse:
output = model(x,prompt_index = fine_to_coarse(target))
else:
output = model(x)
out = output['logits']
_, pred_label = torch.max(out.data, 1)
total += x.data.size()[0]
correct += (pred_label == target.data).sum().item()
if device == "cpu":
pred_labels_list = np.append(pred_labels_list, pred_label.numpy())
true_labels_list = np.append(true_labels_list, target.data.numpy())
else:
pred_labels_list = np.append(pred_labels_list, pred_label.cpu().numpy())
true_labels_list = np.append(true_labels_list, target.data.cpu().numpy())
if get_confusion_matrix:
conf_matrix = confusion_matrix(true_labels_list, pred_labels_list)
if was_training:
model.train()
if get_confusion_matrix:
return correct/float(total), conf_matrix
return correct/float(total)
def compute_accuracy_loss(model, dataloader, device="cpu",args=None):
was_training = False
if model.training:
model.eval()
was_training = True
true_labels_list, pred_labels_list = np.array([]), np.array([])
criterion = nn.CrossEntropyLoss().to(device)
model.to(device)
if type(dataloader) == type([1]):
pass
else:
dataloader = [dataloader]
correct, total, total_loss, batch_count = 0, 0, 0, 0
with torch.no_grad():
for tmp in dataloader:
for batch_idx, (x, target) in enumerate(tmp):
x, target = x.to(device), target.to(device,dtype=torch.int64)
if args is not None and args.uppper_coarse:
output = model(x,prompt_index = fine_to_coarse(target))
out = output['logits']
else:
output = model(x)
out = output['logits']
_, pred_label = torch.max(out.data, 1)
loss = criterion(out, target)
correct += (pred_label == target.data).sum().item()
total_loss += loss.item()
batch_count += 1
total += x.data.size()[0]
if device == "cpu":
pred_labels_list = np.append(pred_labels_list, pred_label.numpy())
true_labels_list = np.append(true_labels_list, target.data.numpy())
else:
pred_labels_list = np.append(pred_labels_list, pred_label.cpu().numpy())
true_labels_list = np.append(true_labels_list, target.data.cpu().numpy())
if was_training:
model.train()
return correct, total, total_loss/batch_count
def compute_accuracy_local(nets, args, net_dataidx_map_train, net_dataidx_map_test, device="cpu"):
test_results = defaultdict(lambda: defaultdict(list))
for net_id in range(args.n_parties):
local_model = copy.deepcopy(nets[net_id])
local_model.eval()
dataidxs_train = net_dataidx_map_train[net_id]
dataidxs_test = net_dataidx_map_test[net_id]
noise_level = 0
_, test_dl_local, _, _ = get_divided_dataloader(args, dataidxs_train, dataidxs_test, noise_level)
test_correct, test_total, test_avg_loss = compute_accuracy_loss(local_model, test_dl_local, device=device)
test_results[net_id]['loss'] = test_avg_loss
test_results[net_id]['correct'] = test_correct
test_results[net_id]['total'] = test_total
test_total_correct = sum([val['correct'] for val in test_results.values()])
test_total_samples = sum([val['total'] for val in test_results.values()])
test_avg_loss = np.mean([val['loss'] for val in test_results.values()])
test_avg_acc = test_total_correct / test_total_samples
test_all_acc = [val['correct'] / val['total'] for val in test_results.values()]
return 0, 0, 0, 0, test_results, test_avg_loss, test_avg_acc, test_all_acc
class GaussianNoise(object):
def __init__(self, mean=0., std=1.):
self.std = std
self.mean = mean
def __call__(self, tensor):
return torch.clamp((tensor + torch.randn(tensor.size()) * self.std + self.mean), 0, 255)
def __repr__(self):
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
def get_dataloader(args, test_bs, dataidxs=None, noise_level=0, net_id=None, total=0, apply_noise=False):
dataset = args.dataset
datadir = args.datadir
train_bs = args.batch_size
if dataset == 'cifar100':
dl_obj = CIFAR100_truncated
transform_train = transforms.Compose([
transforms.Resize((args.img_size, args.img_size)),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4865, 0.4409), (0.2673, 0.2564, 0.2762))])
# data prep for test set
transform_test = transforms.Compose([
transforms.Resize((args.img_size, args.img_size)),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4865, 0.4409), (0.2673, 0.2564, 0.2762))])
train_ds = dl_obj(datadir, dataidxs=dataidxs, train=True, transform=transform_train, download=False)
test_ds = dl_obj(datadir, train=False, transform=transform_test, download=False)
train_dl = data.DataLoader(dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=False)
test_dl = data.DataLoader(dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=False)
return train_dl, test_dl, train_ds, test_ds
def get_divided_dataloader(args, dataidxs_train, dataidxs_test,noise_level=0, drop_last=False, apply_noise=False,traindata_cls_counts=None):
dataset = args.dataset
datadir = args.datadir
train_bs = args.batch_size
test_bs = 4*args.batch_size
if 'cifar100' in dataset:
dl_obj = CIFAR100_truncated
if apply_noise:
transform_train = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((args.img_size, args.img_size)),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4865, 0.4409), (0.2673, 0.2564, 0.2762)),
GaussianNoise(0., noise_level)
])
# data prep for test set
transform_test = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((args.img_size, args.img_size)),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4865, 0.4409), (0.2673, 0.2564, 0.2762)),
GaussianNoise(0., noise_level)
])
else:
transform_train = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((args.img_size, args.img_size)),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4865, 0.4409), (0.2673, 0.2564, 0.2762))])
transform_test = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((args.img_size, args.img_size)),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4865, 0.4409), (0.2673, 0.2564, 0.2762))])
traindata_cls_counts = traindata_cls_counts
train_ds = dl_obj(datadir, dataidxs=dataidxs_train, train=True, transform=transform_train, download=False,return_index=True)
test_ds = dl_obj(datadir, dataidxs= dataidxs_test ,train=False, transform=transform_test, download=False,return_index=False)
conditioned_loader = {}
if traindata_cls_counts is not None:
for cls_id in traindata_cls_counts.keys():
cnd_ds = dl_obj(datadir, dataidxs=dataidxs_train, train=True, transform=transform_train, download=False,cls_condition= cls_id)
train_dl = data.DataLoader(dataset=cnd_ds, batch_size=train_bs, shuffle=True, drop_last=drop_last)
conditioned_loader[cls_id] = train_dl
train_dl = data.DataLoader(dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=drop_last)
test_dl = data.DataLoader(dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=False)
return train_dl, test_dl, train_ds, test_ds,conditioned_loader,traindata_cls_counts