diff --git a/core/src/main/scala/cats/MonoidK.scala b/core/src/main/scala/cats/MonoidK.scala index 2b57b7d785..621a0bc182 100644 --- a/core/src/main/scala/cats/MonoidK.scala +++ b/core/src/main/scala/cats/MonoidK.scala @@ -8,7 +8,7 @@ import simulacrum.typeclass * This type class is useful when its type parameter F[_] has a * structure that can be combined for any particular type, and which * also has an "empty" representation. Thus, MonoidK is like a Monoid - * for kinds (i.e. parameterized types). + * for kinds (i.e. parametrized types). * * A MonoidK[F] can produce a Monoid[F[A]] for any type A. * diff --git a/core/src/main/scala/cats/SemigroupK.scala b/core/src/main/scala/cats/SemigroupK.scala index 56ff6456d4..98164b0a79 100644 --- a/core/src/main/scala/cats/SemigroupK.scala +++ b/core/src/main/scala/cats/SemigroupK.scala @@ -7,7 +7,7 @@ import simulacrum.typeclass * * This type class is useful when its type parameter F[_] has a * structure that can be combined for any particular type. Thus, - * SemigroupK is like a Semigroup for kinds (i.e. parameterized + * SemigroupK is like a Semigroup for kinds (i.e. parametrized * types). * * A SemigroupK[F] can produce a Semigroup[F[A]] for any type A. diff --git a/docs/src/main/tut/typeclasses/monoidk.md b/docs/src/main/tut/typeclasses/monoidk.md index 4c3fe2f78b..69dda92bd5 100644 --- a/docs/src/main/tut/typeclasses/monoidk.md +++ b/docs/src/main/tut/typeclasses/monoidk.md @@ -12,7 +12,7 @@ scaladoc: "#cats.MonoidK" This type class is useful when its type parameter `F[_]` has a structure that can be combined for any particular type, and which also has an "empty" representation. Thus, `MonoidK` is like a `Monoid` -for kinds (i.e. parameterized types). +for kinds (i.e. parametrized types). A `MonoidK[F]` can produce a `Monoid[F[A]]` for any type `A`. @@ -35,7 +35,7 @@ import cats.{Monoid, MonoidK} import cats.implicits._ ``` -Just like `Monoid[A]`, `MonoidK[F]` has an `empty` method, but it is parameterized on the type of the element contained in `F`: +Just like `Monoid[A]`, `MonoidK[F]` has an `empty` method, but it is parametrized on the type of the element contained in `F`: ```tut:book Monoid[List[String]].empty diff --git a/docs/src/main/tut/typeclasses/typeclasses.md b/docs/src/main/tut/typeclasses/typeclasses.md index 2066ea8676..3d0180c130 100644 --- a/docs/src/main/tut/typeclasses/typeclasses.md +++ b/docs/src/main/tut/typeclasses/typeclasses.md @@ -199,7 +199,7 @@ combine(x, combine(y, z)) = combine(combine(x, y), z) combine(x, id) = combine(id, x) = x ``` -With these laws in place, functions parameterized over a `Monoid` can leverage them for say, performance +With these laws in place, functions parametrized over a `Monoid` can leverage them for say, performance reasons. A function that collapses a `List[A]` into a single `A` can do so with `foldLeft` or `foldRight` since `combine` is assumed to be associative, or it can break apart the list into smaller lists and collapse in parallel, such as