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Possibilistic Very Fast Decision Tree
for Uncertain Data Streams

Mohamed Hamroun and Mohamed Salah Gouider

Abstract This paper addresses the classification problem with imperfect Data

Streams. More precisely, it extends standard CVFDT to handle uncertainty in both

building and classification procedures. Uncertainty here is represented by possibil-

ity distributions. The first part investigates the issue of building decision trees from

Data Streams with uncertain attribute values by developing a non-specificity based

information gain as the attribute selection measure which, in our case, is more appro-

priate than the standard selection measure based on Shannon entropy. The extended

approach so-called Possibilistic Very Fast Decision Tree for Uncertain Data Streams

(Poss-CVFDT) offers a more flexible building procedure. The second part addresses

the classification phase. More specifically, it investigates the issue of predicting the

class value of new instances presented with certain and/or uncertain attribute values.

Keywords Classification ⋅Uncertainty ⋅ Possibility theory ⋅Non specificity ⋅Data

streams ⋅ Decision tree

1 Introduction

Data Stream Classification represents an important task in machine learning and

data mining applications. It consists in inducing a classifier from a set of historical

examples with known class values and then using the induced classifier to predict

the class value (the category) of new objects given known the values of their at-

tributes (features). Classification is widely used in many real world applications in-

cluding pharmacology, medicine, marketing, etc. However, classification with data

streams is a very challenging task. Therefore, effective algorithms need to be de-

signed in order to take into account temporal locality and the concept drift of the data.
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To address these issues, many algorithms have been proposed, mainly including var-

ious algorithms based on ensemble approach and decision tree, e.g., [1] proposed

algorithms to learn very fast decision trees (VFDT), [2] proposed a novel algorithm

called concept-adapting Very Fast Decision Tree (CVFDT) which can learn decision

trees incrementally with bounded memory usage, high processing speed, and detect-

ing evolving concepts. In real world applications, the massive amounts of data are

inseparably connected with imperfection. In fact, data can be imprecise or uncertain

or even missing. These imperfections might result from using unreliable information

sources. Standard classifiers, generally, ignore such imperfect data by rejecting them

or replacing each imperfect data item by an arbitrary certain and precise value or by

a statistical value such as a median, mode or a mean. This is not a good practice

because it alters the real observed data. Consequently, ordinary Data Stream classi-

fication techniques such as CVFDT should be adequately adapted to take care of this

problem.

Our idea is to treat different levels of uncertainty using possibility theory which

is a non-classical theory of uncertainty [3]. More precisely, we will handle samples

whose attribute values are given in the form of possibility distributions. We also

adapt the attribute selection measure, used in the building phase, to the possibilistic

framework by using a non-specificity based criterion instead of the Shannon entropy.

In addition, we introduce a new sliding model based on samples’s timestamp in order

to improve the ability of CVFDT to cope with concept drift issue. Such possibilistic

decision tree will be referred to by Poss-CVFDT. The paper is organized as follows:

Sect. 2 presents a summary of related works. Section 3 proposes an extension of

CVFDT, namely the Poss-CVFDT approach. This section defines the building pro-

cedure, then, it describes the method that we propose for the classification process.

Before concluding, Sect. 4 presents and analyzes experimental results carried out on

modified versions of commonly used data sets obtained from the U.C.I. machine

learning repository.

2 Related Works

Uncertain Data Streams

Some previous work focused on building classification models on uncertain data ex-

amples. All of them assume that the Probability Density Function (PDF) of attribute

values are known. [7] developed an Uncertain Decision Tree (UDT) for uncertain

data. [6] developed another type of decision tree DTU for uncertain data classifica-

tion. [8] proposed a neural network method for classifying uncertain data. Since the

uncertainty is prevalent in data streams, the research of classification is dedicated to

uncertain data streams nowadays. Unfortunately, only a few algorithms are available.

[9] proposed two types of ensemble classification algorithms, Static Classifier En-

semble (SCE) and Dynamic Classifier Ensemble (DCE), for mining uncertain data

streams. [10] proposed a CVFDT based decision tree named UCVFDT for uncertain
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data streams. UCVFDT has the ability to handle examples with uncertain attribute

values by adopting the model described by [5] to represent uncertain nominal at-

tribute values. In their work, uncertainty is represented by a probability degree on

the set of possible values considered in the classification problem.

3 Poss-CVFDT

3.1 Data Streams Structure

Instead of rejecting instances having uncertain attributes values or adding a null at-

tribute value to such instances, we use the possibility theory. More formally, we

propose to represent the uncertainty on the attributes values of instances by a possi-

bility degree on the set of possible values considered in the classification problem.

Among the advantages for working under the possibility theory framework, we recall

that the two extreme cases, total ignorance and complete knowledge, are easily satis-

fied. Given a stream data S= {S1, S2,… , St,…} where St is a sample in S, arriving

at time Ti for any i ⟨ n , Ti ⟨ Tn , we denoted by St = ⟨Xuc
, y⟩.

∙ Here Xuc = {Xuc
1 ,Xuc

2 ,… ,Xuc
d } is a vector of d uncertain categorical attributes.

Given a categorical domain Dom(Xuc
i )= {v1, v2,… , vm}, Xuc

i is characterized by

possibility distribution over Dom, where 0 ≤ 𝜋(Xuc
i =vj) ≤ 1

∙ Yk ∈ C denotes the class label of St, where C is set of class labels on stream data

C= {y1, y2,… , yk,… , yn}.

we build and learn a fast decision tree model yk=f (Xuc) form S to classify the un-

known samples.

The incoming sample will be passed down to a certain node from the root re-

cursively according to its attribute value. Here we adopt a recursive process to par-

tition the training samples into fractional samples based on [7, 10]. By giving a

split attribute at node N, denoted by Xuc
i , sample st is divided into a set of samples

{st1, st2,… , stm} by Xuc
i where m=∣ Dom(Xuc

i ) ∣ and stj is a copy of st except for

attribute Xuc
i .

3.2 Sliding Window Model

During the classification technique, we emphasis the concept drift issue which

change the classifier result over time. The capture of such changes would help in

updating the classifier model effectively. The use of an outdated model could lead to

very low classification accuracy. That is why we need to focus only on the N recent

records. Based on timestamp of samples, a new approach have been proposed to de-

tect and identify outliers in the underlying data [11]. This model can be an interisting

task in many sensor network applications.
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3.3 Specificity Gain

Classical splitting measures such as Information Gain, Gini Index are not applicable

in our case. In this section, based on possibility measures, we define new parameters

which take into account the uncertainty encountered in the data flow. An interpre-

tation have been proposed by [12, 13] based on the context of possibility theory

assuming that the U-uncertainty measure of nonspecificities of possibility distribu-

tion, which is defined as

Nonspec(𝜋) =
n∑

i=1
[(𝜋(𝜔(i)) − 𝜋(𝜔(i+1)))log2i] + (1 − 𝜋(1))log2n (1)

can be justified as a proper generalization of Hartley Information [14] to the possi-

bilistic setting. Non Specificity plays the same role to that of Shannon Entropy in

probability theory.So we use it to construct a selection measure in the same way as

information gain and Information gain ratio are constructed form Shannon Entropy.

We calculate a Specificity Gain based on the nonspecificities on the possibility dis-

tributions 𝜋Xuc
i

on the values of Xuc
i , 𝜋C on the set of class labels and 𝜋CXuc

i
the joint

distribution of the set of values of Xuc
i and the set of classes. The idea so suggests it-

self to construct these possibility distributions but we have to take into consideration

the concept underlying possibility theory. The solution that we propose is the fol-

lowing : We will induce a representative possibility distribution that represents the

marginal distribution of the different possibility degrees of the different values of Xuc
i

and the set of class labels C. These marginal distributions are obtained not by sum-

ming values but by taking their maximum. Then, the average is applied as the case:

𝜋Xuc
i
(vj) = Avg|C|(maxy∈C(𝜋CXuc

i
(y, vj))) (2)

𝜋C(y) = Avg|Dom(Xuc
i )|(maxvj∈Dom(Xuc

i )(𝜋CXuc
i
(y, vj))) (3)

We define the Specificity gain as:

Sgain(Xuc
i ) = Nonspec(𝜋C) + Nonscpec(𝜋Xuc

i
)

− Nonspec(𝜋CXuc
i
) (4)

We select for test, the attribute which yields the highest Sgain.

In order to collect statical data to Sgain, we only make a single pass over set

Samples SN. So we propose, at each node of the nodes of the dynamic decision tree,

for each possible value vj of each attribute Xuc
i ∈ Xuc

, for each class yk, to associate

it with a vector called Node Feature(NF) which is composed by four parameters

(PSijk, Nijk, N(S), ts). Here,
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∙ PSijk denotes the sum of possibility degrees of each coming sample in yk that

Xuc
i = vj.

∙ N(S) defines the number of the samples contained in the NF.

∙ Nijk denotes the ratio of the sum of possibility degrees of each sample in yk that

Xuc
i =vj, Nijk =

PSijk
N(S) .

∙ ts indicate the time of the recent sample incorporated in the NF.

→ for each new coming sample Snew, we only need to update PSijk, Nijk, N(S) as

follows:

PSijk = PSijk + 𝜋(Xuc
i(Snew) = vj) (5)

N(S) = N(S) + 1 (6)

Nijk =
PSijk
N(S)

(7)

→ for removing sample Sold from a node, we only need to update PSijk, Nijk, N(S) as

follows:

PSijk = PSijk − 𝜋(Xuc
i(Sold) = vj) (8)

N(S) = N(S) − 1 (9)

Nijk =
PSijk
N(S)

(10)

3.4 Poss-CVFDT Building

Based on [2], Algorithm 1 defines a pseudo code of the Poss-CVFDT building steps.

In this study we use Sgain as G(.), Xuc
denotes a vector of uncertain attributes, NFijk:

the NF used to clollect statical data for computing specificity gain. ts defines the

arrival time of each sample used to enhance the ability of Poss-CVFDT to detect

outdated samples.

Algorithm 1 illustrates the process of Poss-CVFDT learning in four steps : At the

begining, as the classical technique CVFDT, our algorithm does some initializations

and then process each sample (Xuc
,y) to the leaves (1–7). Next from line 8 to 15

each sample arrived is associated with a timestamp. Then it added to the sliding

window. Old samples are forgetten from the tree as well as from the window. We

detect and identify outdated samples according to their arrival time. The step 16 is

for maitaining the tree (Algorithm 2). Finally, from line 17 to 20 we check the split

validity of an internal node periodically.
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Algorithm 2 details the growing of the uncertain decision tree. The node Feature’s

parameters are maintained between lines 3 and 7. From line 8 to line 18, a sample

is split into a set of fractional samples. From line 19 to 29, the specificity gain is

computed using the node feature at leaf nodes. Based on Hoeffding bound, split

attribute is chose and the leaf node is split into an internal node.

Algorithm 1 illustrates the process of Poss-CVFDT learning:

Algorithm1: The learning algorithm for Poss-CVFDT

Inputs

S a stream of samples;
XUC an uncertain categorical attribute vector;
̄NFijk a Node feature : a vector associated to each node ;

G(.) Specificity gain for split evaluation;
W the size of the Window ,based time;
Ti the arrival time of each sample ;
Nmin the number between checks for growth;
N(s) defines the number of the samples contained in the node Feature;
f the number between checks for drift;

Outputs
HT a decision tree for uncertain samples

1 Begin
2 Let HT be a tree with a single leaf l , the root;
3 Let ALT(l) be an initially empty set of alternate trees for l;
4 For each each class yk do
5 For each possible value vj of each attribute Xuc

i 𝜀 Xuc

6 Let Nijk = 0 , PSijk=0 , N(s) =0
//Initialize the Node Feature ̄NFijk(l)
7 End For
8 End For
9 For each sample (Xuc , y) in S do
10 Sort (Xuc , y) into a set of leaves L using HT of any node (Xuc , y)
passes through
11 ts indicate the time of the recent sample incorporated in
the node Feature ts = Tn
12 Add ((Xuc ,y), t(s) ) to the beginning of W
13 Let ((Xuc

w , yw, t(s) ) be the last element of W.
14 Forget Samples (HT, ((Xuc

w ; yw),t(s))) where Ti ⟨ t(S) −W

15 Let W with ((Xuc
w ; yw); t(s)) removed

16 Poss-CVFDTGROW(HT,G, (Xuc , y),nmin )
// refer to Algorithm 2
17 If there have been f samples since the last checking of alternate trees
18 CheckSplitValidity(HT)
19 Return HT
20 End.
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Algorithm 2 details the growing procedure of the uncertain decision tree.

Algorithm2: Poss-CVFDTGROW(HT,G, (Xuc
, y), nmin)

1 Let l be the root of HT
2 Let ALT(l) be an initially empty set of alternate trees for l;
3 For each class yk do
4 For each possible value vj of each attribute Xuc

i 𝜀 Xuc

5 Maintain the ̄NFijk following formula (5) , (6) , (7)
6 End For
7 End For
8 For each TALT in ALT(l) do
9 Poss-CVFDTGROW(TALT,G, (Xuc , y),nmin )
10 End For
11 Label l with the majority class among the samples seen so
far at l
12 If l is not a leaf
13 Split ( Xuc , y) into a set of fractional samples FS
14 For each sample Stj in FS do
15 Let lj be the branch child for Stj
16 Poss-CVFDTGROW(lj,G, Stj , nmin )
17 End For
18 End IF
19 Else If N(S)⟩ nmin
20 Compute G(X) for each attribute Xuc

i 𝜀 Xuc based on ̄NFijk(l)
and formula (4)
21 Let Xuc

a , Xuc
b be the attribute with highest and second-highest ̄G

22 Compute 𝜀

23 If △ ̄Gl = ̄G(Xa) − ̄G(Xb) ⟩ 𝜀

24 Replace l by an internal node that splits on Xuc
a

25 For each class yk and each vj possible value of
each attribute Xuc

i 𝜀 Xuc
j

26 Initialize ̄NFijk(lj)
27 End For
28 End If
29 End IF
30 Return HT

3.5 Prediction with Poss-CVFDT

Once a Poss-CVFDT is constructed, it can be used for predicting class types. The

prediction process starts from the root node, the test condition is applied at each

node in the tree and the appropriate branch is followed based on the outcome of the

test. When the test sample S is certain, the process is quite straightforward since the

test result will lead to one single branch without ambiguity. When the test is on an

uncertain attribute, the prediction algorithm proceeds as follows:
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Given an uncertain test sample st, ⟨Xuc
, ?⟩, If the test condition is on a uncer-

tain categorical attribute Xuc
i ∈ Xuc

and Dom(Xuc
i )= {v1, v2,… , vm} a categorical

domain which characterized by a possibility distribution where 0 <= 𝜋(Xuc
i =

vj) <= 1.

For the leaf node of Poss-CVFDT, each class yk ∈ C has a possibility degree

𝜋C(yk) which is the possibility degree for an instance to be in class yk if it falls in

this leaf node. 𝜋C(yk) is computed based on the node feature and more especillay on

Nijk in the node. Assume path L from the root to a leaf node contains t tests, and

the data are classified into one class yk in the end,When predicting the class type

for a sample S with uncertain attributes, it is possible that the process takes multiple

paths. Suppose there are m paths taken in total, then the possibility degree of yk can

be computed as the fraction of the total of possibility degree obtained at each path

and the number of paths (m) : 𝜋C(yk) =
∑m

i=1 𝜋
i
yk

m .

Finally, the sample will be predicted to be of class yk which has the largest pos-

sibility degree 𝜋C(yk) among the set of class labes, where k=1,2,. . . ,|C| and poss-

dist={𝜋C(y1), 𝜋C(y2), 𝜋C(y3),… , 𝜋C(|C|)} a possibility distribution over

classes at a node leaf.

4 Expriment Study

In this section, we present the experimental results of the proposed decision tree algo-

rithm Poss-CVFDT. A collection containing 3 real-world benchmark datasets were

assembled from the UCI Repository. The evaluation of our Poss-CVFDT classifier

was performed based mainly on three evaluation criterias, namely, the classification

accuracy expressed by the percentage of correct classification (PCC), F1 Measure

and the running time (t).

4.1 Artificial Uncertainty Creation in the Training Set

Due to a lack of real uncertain datasets, we introduce synthetic uncertainty into the

datasets. We treated uncertainty in our approach by assigning a possibility distribu-

tion to attribute values. These possibility degrees are created artificially (Table 1).

Example:

– Education: Bachelors (B), Masters (M), Doctorate (D).

– Occupation: Technique support (TS), Craft repair (CR), Sales (S).

– Native_country: United States (US), Cambodia (C), England (E).
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Table 1 The classical training set

S Education Occupation Native_country

X1 B TS C

X2 D CR E

Table 2. details the new training set with uncertain attribute values.

Table 2 Training set based on possibility distributions

S Education Occupation Native_country

B M D TS CR S US C E

X1 1 0 0 0.1 1 0.7 1 0.2 0.9

X2 0.5 1 0.6 1 0.7 0.2 1 0.3 0.4

4.2 Simulations on the Real Data Sets

We have modified UCI databases by introducing uncertainty in the attributes values

of their instances as presented in Table 3.

Table 3 Description of datasets

Datasets # Instances # Attributes # Classes

Solar-Flare 1389 10 3

Car evaluation 1728 6 4

Nursery 12960 8 5

4.3 Experimental Results: Poss-CVFDT VERSUS UCVFDT

We compare in this section the results obtained by our proposed approach and those

obtained by the UCVFDT.

1. Comparison of Classification Accuracy and F1 Measure: Comparing two dif-

ferent methods which work under two differents frameworks seems to be not

imperative. This section presents different results carried out from testing Poss-

CVFDT and UCVFDT. We consider P as the percentage of attributes with uncer-

tain values from the training set defined such that: 0 < P < 50 or 50 < P < 100.
The percentage of P is useful to test the behavior of our classifier and its robust-

ness in dealing with uncertainty. These uncertainty percentages represent the per-

centages of generated uncertain objects of one given dataset. For example, if we
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fixe P > 50%, it means that, for a given database which contains 10 attributes,

more than 5 will be generated with uncertainty. These values of P allow us to

generate the uncertain databases. We take g as the possibility degree defined for

the different values of an attribute: 0 < g < 0, 5 or 0, 5 < g <= 1.
As seen in Figs. 1 and 2, both Accuracy and F1 of Poss-CVFDT are higher than

that of UCVFDT. We can see that our approach achieves encouraging results

when P < 50 and g ∈ [0,0.5]. As shown in Figs. 3 and 4, when the degree of un-

certainty increases P > 50, both accuracy and F1 of Poss-CVFDT decline slowly.

We can also observe that, both accuracy and F1 of Poss-CVFDT are quite com-

parable to those of UCVFDT. This demonstrates the robustness of our approach

against the uncertainty is due to the possibility theory which handle the imprecise

data efficiently by treating all the extreme cases.

2. Running Time: Figure 5 illustrates the comparison between UCVFDT and our

approach in term of processing time. It is obvious that these encouraging re-

sults are obtained due to the sliding model which processes only the most recent

records by discarding the obsolete ones. This mechanism allows obtaining good

results in few times and with high accuracy.

Fig. 1 PCC with P < 50
and g < 0.5

Fig. 2 F1 with P < 50 and

g < 0.5
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Fig. 3 PCC with P < 50
and g < 0.5

Fig. 4 F1 with P < 50 and

g < 0.5

Fig. 5 Execution time
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5 Conclusion

In this paper, we propose a new classification method adopted to an uncertain frame-

work named the possiblistic CVFDT method based on the possibility theory and the

classical CVFDT. The Poss-CVFDT aim to cope with objects described by possi-

bility distributions. We proposed a new method to compute the measure of selec-

tion which called Specificity gain. In Fact, We have introduced a new sliding model

based on samples’s timestamp In order to improve the ability of Poss-CVFDT to cope

with the concept drift issue. We have performed experimentations on UCI databases

in order to evaluate the performance of our possibilistic CVFDT method and the

UCVFDT approach.
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