-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathemotiklue.py
executable file
·460 lines (401 loc) · 23.2 KB
/
emotiklue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
#!/usr/bin/env python3
import argparse
import gzip
import itertools
import json
import multiprocessing
import os
import gensim
import keras.backend as K
import keras.layers
import keras.models
import keras.preprocessing.sequence
import keras.regularizers
import keras.utils
import keras.utils.generic_utils
import numpy as np
import evaluate_iest
class L1L2_m(keras.regularizers.Regularizer):
"""Regularizer for L1 and L2 regularization.
# Arguments
l1: Float; L1 regularization factor.
l2: Float; L2 regularization factor.
"""
def __init__(self, l1=0.0, l2=0.01, prior=None, prior_shape=None):
with K.name_scope(self.__class__.__name__):
self.l1 = K.variable(l1, name='l1')
self.l2 = K.variable(l2, name='l2')
self.val_prior = prior
if prior is None:
prior = np.zeros(prior_shape)
self.prior_shape = prior_shape
if type(prior) == dict:
prior_array = np.array(prior["value"])
self.prior = K.variable(prior_array, name="prior")
self.prior_shape = prior_array.shape
else:
self.prior = K.variable(prior, name="prior")
self.prior_shape = prior.shape
self.val_l1 = l1
self.val_l2 = l2
def set_l1_l2(self, l1, l2):
K.set_value(self.l1, l1)
K.set_value(self.l2, l2)
self.val_l1 = l1
self.val_l2 = l2
def set_prior(self, prior):
K.set_value(self.prior, prior)
self.val_prior = prior
self.prior_shape = prior.shape
def __call__(self, x):
regularization = 0.
if self.val_l1 > 0.:
if self.val_prior is not None:
regularization += K.sum(self.l1 * K.abs(x - self.prior))
else:
regularization += K.sum(self.l1 * K.abs(x))
if self.val_l2 > 0.:
if self.val_prior is not None:
regularization += K.sum(self.l2 * K.square(x - self.prior))
else:
regularization += K.sum(self.l2 * K.square(x))
return regularization
def get_config(self):
config = {'l1': float(K.get_value(self.l1)),
'l2': float(K.get_value(self.l2)),
'prior_shape': self.prior_shape}
if self.val_prior is not None:
config["prior"] = K.get_value(self.prior)
return config
def arguments():
parser = argparse.ArgumentParser(description="EmotiKLUE")
subparsers = parser.add_subparsers(dest="command", help="Command to run.")
subparsers.required = True
parser_train = subparsers.add_parser("train", help="train a model (run 'train -h' for more details)")
# parser_adapt = subparsers.add_parser("adapt", help="adapt a model (run 'retrain -h' for more details)")
parser_retrain = subparsers.add_parser("retrain", help="retrain a model (run 'retrain -h' for more details)")
parser_test = subparsers.add_parser("test", help="test a model (run 'test -h' for more details)")
parser_predict = subparsers.add_parser("predict", help="use model to predict (run 'predict -h' for more details)")
# train
parser_train.add_argument("-m", "--model", type=os.path.abspath, required=True, help="Path to model")
parser_train.add_argument("--val", type=os.path.abspath, required=True, help="Dataset for validation")
parser_train.add_argument("--embeddings", type=os.path.abspath, required=True, help="Word embeddings")
parser_train.add_argument("-e", "--epochs", type=int, default=10, help="Number of epochs")
parser_train.add_argument("--lda", type=str, help="LDA model")
parser_train.add_argument("--dict", type=os.path.abspath, help="Dictionary for LDA")
parser_train.add_argument("--lda-mode", choices=["feature", "filter"], default="feature", help="Should LDA topics be used as regular features or as filter?")
parser_train.add_argument("FILE", type=os.path.abspath, help="Dataset for training")
parser_train.set_defaults(func=train)
# retrain
parser_retrain.add_argument("-m", "--model", type=os.path.abspath, required=True, help="Path to model")
parser_retrain.add_argument("--val", type=os.path.abspath, required=True, help="Dataset for validation")
parser_retrain.add_argument("-e", "--epochs", type=int, default=10, help="Number of epochs")
parser_retrain.add_argument("--lda", type=str, help="LDA model")
parser_retrain.add_argument("--dict", type=os.path.abspath, help="Dictionary for LDA")
parser_retrain.add_argument("FILE", type=os.path.abspath, help="Dataset for retraining")
parser_retrain.set_defaults(func=retrain)
# adapt
# parser_adapt.add_argument("-m", "--model", type=os.path.abspath, required=True, help="Path to model")
# parser_adapt.add_argument("--val", type=os.path.abspath, required=True, help="Dataset for validation")
# parser_adapt.add_argument("FILE", type=os.path.abspath, help="Dataset for adapting")
# parser_adapt.set_defaults(func=regularized_adaptation)
# test
parser_test.add_argument("-m", "--model", type=os.path.abspath, required=True, help="Path to model")
parser_test.add_argument("--lda", type=str, help="LDA model")
parser_test.add_argument("--dict", type=os.path.abspath, help="Dictionary for LDA")
parser_test.add_argument("FILE", type=os.path.abspath, help="Dataset for testing")
parser_test.set_defaults(func=test)
# predict
parser_predict.add_argument("-m", "--model", type=os.path.abspath, required=True, help="Path to model")
parser_predict.add_argument("--lda", type=str, help="LDA model")
parser_predict.add_argument("--dict", type=os.path.abspath, help="Dictionary for LDA")
parser_predict.add_argument("FILE", type=os.path.abspath, help="Dataset for predicting")
parser_predict.set_defaults(func=predict)
return parser.parse_args()
def read_dataset(filename):
data = []
vocabulary, classes = set(), set()
with open(filename, encoding="utf8") as fh:
for line in fh:
if "[#TRIGGERWORD#]" not in line:
continue
cls, text = line.strip().split("\t")
left_str, right_str = text.strip().split("[#TRIGGERWORD#]")
left_words = left_str.strip().split()
right_words = right_str.strip().split()
vocabulary.update(set(itertools.chain(left_words, right_words)))
classes.add(cls)
data.append((left_words, right_words, cls))
lw, rw, tgt = zip(*data)
return lw, rw, tgt, vocabulary, classes
def read_glove(filename):
embeddings_index = {}
size = 0
with gzip.open(filename, mode="rt", encoding="utf8") as fh:
for line in fh:
values = line.strip().split()
size = len(values) - 1
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
return embeddings_index, size
def vectorize_words(sequence, mapping, reverse=False):
if reverse:
sequence = reversed(sequence)
return [mapping.get(w, len(mapping) + 1) for w in sequence]
def topic_distribution(dict_path, lda_prefix, left_words, right_words):
dictionary = gensim.corpora.Dictionary.load_from_text(dict_path)
lda = gensim.models.ldamodel.LdaModel.load(lda_prefix)
topic_dist = []
for lw, rw in zip(left_words, right_words):
bow = dictionary.doc2bow(lw + rw)
topics = lda[bow]
td = [0.00001] * 100
for i, p in topics:
td[i] = p
topic_dist.append(td)
return np.array(topic_dist)
def train(args):
WORD_LSTM_DIM = 300
DENSE_DIM = WORD_LSTM_DIM
DROPOUT = 0.2
RECURRENT_DROPOUT = 0.0
BATCH_SIZE = 160
train_lw, train_rw, train_tgt, vocabulary, classes = read_dataset(args.FILE)
val_lw, val_rw, val_tgt, _, _ = read_dataset(args.val)
val_tgts = val_tgt
embeddings_index, WORD_EMBEDDING_DIM = read_glove(args.embeddings)
# mappings
word_to_idx = {w: i for i, w in enumerate(sorted(vocabulary), start=1)}
tgt_to_idx = {c: i for i, c in enumerate(sorted(classes), start=0)}
# create embedding layers
embedding_matrix = np.zeros((len(vocabulary) + 2, WORD_EMBEDDING_DIM))
for word, idx in word_to_idx.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
embedding_matrix[idx] = embedding_vector
# LDA models
if args.lda:
train_topics = topic_distribution(args.dict, args.lda, train_lw, train_rw)
val_topics = topic_distribution(args.dict, args.lda, val_lw, val_rw)
# vectorize
train_lw = [vectorize_words(lw, word_to_idx) for lw in train_lw]
train_rw = [vectorize_words(rw, word_to_idx, reverse=True) for rw in train_rw]
train_tgt = vectorize_words(train_tgt, tgt_to_idx)
targets = keras.utils.to_categorical(train_tgt, num_classes=len(classes))
val_lw = [vectorize_words(lw, word_to_idx) for lw in val_lw]
val_rw = [vectorize_words(rw, word_to_idx, reverse=True) for rw in val_rw]
val_tgt = vectorize_words(val_tgt, tgt_to_idx)
val_targets = keras.utils.to_categorical(val_tgt, num_classes=len(classes))
# pad sequences
max_len_lw = int(max((len(lw) for lw in itertools.chain(train_lw, val_lw))) * 1.1)
max_len_rw = int(max((len(rw) for rw in itertools.chain(train_rw, val_rw))) * 1.1)
train_left_words = keras.preprocessing.sequence.pad_sequences(train_lw, maxlen=max_len_lw, padding="pre", truncating="pre")
train_right_words = keras.preprocessing.sequence.pad_sequences(train_rw, maxlen=max_len_rw, padding="pre", truncating="pre")
val_left_words = keras.preprocessing.sequence.pad_sequences(val_lw, maxlen=max_len_lw, padding="pre", truncating="pre")
val_right_words = keras.preprocessing.sequence.pad_sequences(val_rw, maxlen=max_len_rw, padding="pre", truncating="pre")
# with keras.utils.CustomObjectScope({L1L2_m.__name__: L1L2_m}):
# input layers
input_lw = keras.layers.Input(shape=(train_left_words.shape[1],))
input_rw = keras.layers.Input(shape=(train_right_words.shape[1],))
input_topics = keras.layers.Input(shape=(100,))
# embedding layers
embedding_lw = keras.layers.Embedding(len(vocabulary) + 2, WORD_EMBEDDING_DIM, mask_zero=True, weights=[embedding_matrix], trainable=False)(input_lw)
embedding_rw = keras.layers.Embedding(len(vocabulary) + 2, WORD_EMBEDDING_DIM, mask_zero=True, weights=[embedding_matrix], trainable=False)(input_rw)
# LSTMs
# lstm_lw = keras.layers.LSTM(WORD_LSTM_DIM, dropout=DROPOUT, recurrent_dropout=RECURRENT_DROPOUT,
# kernel_regularizer=L1L2_m(l1=0, l2=0, prior_shape=(WORD_EMBEDDING_DIM, WORD_LSTM_DIM * 4)))(embedding_lw)
# lstm_rw = keras.layers.LSTM(WORD_LSTM_DIM, dropout=DROPOUT, recurrent_dropout=RECURRENT_DROPOUT,
# kernel_regularizer=L1L2_m(l1=0, l2=0, prior_shape=(WORD_EMBEDDING_DIM, WORD_LSTM_DIM * 4)))(embedding_rw)
lstm_lw = keras.layers.LSTM(WORD_LSTM_DIM, dropout=DROPOUT, recurrent_dropout=RECURRENT_DROPOUT)(embedding_lw)
lstm_rw = keras.layers.LSTM(WORD_LSTM_DIM, dropout=DROPOUT, recurrent_dropout=RECURRENT_DROPOUT)(embedding_rw)
# concatenate
lstm_out = keras.layers.Concatenate(axis=1)([lstm_lw, lstm_rw])
# dense layers
# dense01 = keras.layers.Dense(DENSE_DIM, activation="tanh", kernel_regularizer=L1L2_m(l1=0, l2=0, prior_shape=(LSTM_DIM, DENSE_DIM)))(lstm_out)
if args.lda:
if args.lda_mode == "feature":
# TOPICS AS FEATURES #
topics = keras.layers.Concatenate(axis=1)([lstm_out, input_topics])
dense01 = keras.layers.Dense(DENSE_DIM, activation="tanh")(topics)
dropout01 = keras.layers.Dropout(DROPOUT)(dense01)
predictions = keras.layers.Dense(len(classes), activation="softmax")(dropout01)
elif args.lda_mode == "filter":
# MULTIPLY WITH TOPICS #
dense01 = keras.layers.Dense(DENSE_DIM, activation="tanh")(lstm_out)
# dropout01 = keras.layers.Dropout(DROPOUT)(dense01)
topic_dense = keras.layers.Dense(DENSE_DIM, activation="softmax")(input_topics)
# element-wise multiplication with topics
# topic_filter = keras.layers.Multiply()([dropout01, topic_dense])
topic_filter = keras.layers.Multiply()([dense01, topic_dense])
predictions = keras.layers.Dense(len(classes), activation="softmax")(topic_filter)
else:
# NOTHING #
dense01 = keras.layers.Dense(DENSE_DIM, activation="tanh")(lstm_out)
dropout01 = keras.layers.Dropout(DROPOUT)(dense01)
predictions = keras.layers.Dense(len(classes), activation="softmax")(dropout01)
# dense02 = keras.layers.Dense(DENSE_DIM // 2, activation="tanh", kernel_regularizer=L1L2_m(l1=0, l2=0, prior_shape=(LSTM_DIM, DENSE_DIM)))(dropout01)
# predictions = keras.layers.Dense(len(classes), activation="softmax", kernel_regularizer=L1L2_m(l1=0, l2=0, prior_shape=(DENSE_DIM, len(classes))))(dropout02)
# predictions = keras.layers.Dense(len(classes), activation="softmax")(dropout01)
if args.lda:
model = keras.models.Model(inputs=[input_lw, input_rw, input_topics], outputs=predictions)
else:
model = keras.models.Model(inputs=[input_lw, input_rw], outputs=predictions)
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
model.summary()
early_stopper = keras.callbacks.EarlyStopping(monitor="val_loss", patience=2)
if args.lda:
model.fit([train_left_words, train_right_words, train_topics], targets, batch_size=BATCH_SIZE, epochs=args.epochs,
callbacks=[early_stopper], validation_data=([val_left_words, val_right_words, val_topics], val_targets))
else:
model.fit([train_left_words, train_right_words], targets, batch_size=BATCH_SIZE, epochs=args.epochs,
callbacks=[early_stopper], validation_data=([val_left_words, val_right_words], val_targets))
model.save("%s.h5" % args.model)
with open("%s.maps" % args.model, mode="w", encoding="utf-8") as f:
json.dump((word_to_idx, tgt_to_idx, max_len_lw, max_len_rw), f, ensure_ascii=False)
# Official score
if args.lda:
predictions = model.predict([val_left_words, val_right_words, val_topics])
else:
predictions = model.predict([val_left_words, val_right_words])
idx_to_tgt = {i: c for c, i in tgt_to_idx.items()}
predicted = [idx_to_tgt[p] for p in predictions.argmax(axis=1)]
evaluate_iest.calculatePRF(list(val_tgts), predicted)
def retrain(args):
BATCH_SIZE = 160
# with keras.utils.CustomObjectScope({L1L2_m.__name__: L1L2_m}):
model = keras.models.load_model("%s.h5" % args.model)
# model.optimizer.set_state()
with open("%s.maps" % args.model, encoding="utf-8") as f:
word_to_idx, tgt_to_idx, max_len_lw, max_len_rw = json.load(f)
train_lw, train_rw, train_tgt, _, _ = read_dataset(args.FILE)
val_lw, val_rw, val_tgt, _, _ = read_dataset(args.val)
if args.lda:
train_topics = topic_distribution(args.dict, args.lda, train_lw, train_rw)
val_topics = topic_distribution(args.dict, args.lda, val_lw, val_rw)
train_lw = [vectorize_words(lw, word_to_idx) for lw in train_lw]
train_rw = [vectorize_words(rw, word_to_idx, reverse=True) for rw in train_rw]
train_tgt = vectorize_words(train_tgt, tgt_to_idx)
targets = keras.utils.to_categorical(train_tgt, num_classes=len(tgt_to_idx.values()))
train_left_words = keras.preprocessing.sequence.pad_sequences(train_lw, maxlen=max_len_lw, padding="pre", truncating="pre")
train_right_words = keras.preprocessing.sequence.pad_sequences(train_rw, maxlen=max_len_rw, padding="pre", truncating="pre")
val_tgts = val_tgt
val_lw = [vectorize_words(lw, word_to_idx) for lw in val_lw]
val_rw = [vectorize_words(rw, word_to_idx, reverse=True) for rw in val_rw]
val_tgt = vectorize_words(val_tgt, tgt_to_idx)
val_targets = keras.utils.to_categorical(val_tgt, num_classes=len(tgt_to_idx.values()))
val_left_words = keras.preprocessing.sequence.pad_sequences(val_lw, maxlen=max_len_lw, padding="pre", truncating="pre")
val_right_words = keras.preprocessing.sequence.pad_sequences(val_rw, maxlen=max_len_rw, padding="pre", truncating="pre")
early_stopper = keras.callbacks.EarlyStopping(monitor="val_loss", patience=2)
if args.lda:
model.fit([train_left_words, train_right_words, train_topics], targets, batch_size=BATCH_SIZE, epochs=args.epochs,
callbacks=[early_stopper], validation_data=([val_left_words, val_right_words, val_topics], val_targets))
else:
model.fit([train_left_words, train_right_words], targets, batch_size=BATCH_SIZE, epochs=args.epochs,
callbacks=[early_stopper], validation_data=([val_left_words, val_right_words], val_targets))
model.save("%s_retrain.h5" % args.model)
with open("%s_retrain.maps" % args.model, mode="w", encoding="utf-8") as f:
json.dump((word_to_idx, tgt_to_idx, max_len_lw, max_len_rw), f, ensure_ascii=False)
# Official score
if args.lda:
predictions = model.predict([val_left_words, val_right_words, val_topics])
else:
predictions = model.predict([val_left_words, val_right_words])
idx_to_tgt = {i: c for c, i in tgt_to_idx.items()}
predicted = [idx_to_tgt[p] for p in predictions.argmax(axis=1)]
evaluate_iest.calculatePRF(list(val_tgts), predicted)
def test(args):
# with keras.utils.CustomObjectScope({L1L2_m.__name__: L1L2_m}):
model = keras.models.load_model("%s.h5" % args.model)
with open("%s.maps" % args.model, encoding="utf-8") as f:
word_to_idx, tgt_to_idx, max_len_lw, max_len_rw = json.load(f)
idx_to_tgt = {i: c for c, i in tgt_to_idx.items()}
test_lw, test_rw, test_tgt, _, _ = read_dataset(args.FILE)
if args.lda:
topics = topic_distribution(args.dict, args.lda, test_lw, test_rw)
test_lw = [vectorize_words(lw, word_to_idx) for lw in test_lw]
test_rw = [vectorize_words(rw, word_to_idx, reverse=True) for rw in test_rw]
test_left_words = keras.preprocessing.sequence.pad_sequences(test_lw, maxlen=max_len_lw, padding="pre", truncating="pre")
test_right_words = keras.preprocessing.sequence.pad_sequences(test_rw, maxlen=max_len_rw, padding="pre", truncating="pre")
if args.lda:
predictions = model.predict([test_left_words, test_right_words, topics])
else:
predictions = model.predict([test_left_words, test_right_words])
predicted = [idx_to_tgt[p] for p in predictions.argmax(axis=1)]
evaluate_iest.calculatePRF(list(test_tgt), predicted)
def predict(args):
# with keras.utils.CustomObjectScope({L1L2_m.__name__: L1L2_m}):
model = keras.models.load_model("%s.h5" % args.model)
with open("%s.maps" % args.model, encoding="utf-8") as f:
word_to_idx, tgt_to_idx, max_len_lw, max_len_rw = json.load(f)
idx_to_tgt = {i: c for c, i in tgt_to_idx.items()}
test_lw, test_rw, test_tgt, _, _ = read_dataset(args.FILE)
if args.lda:
topics = topic_distribution(args.dict, args.lda, test_lw, test_rw)
test_lw = [vectorize_words(lw, word_to_idx) for lw in test_lw]
test_rw = [vectorize_words(rw, word_to_idx, reverse=True) for rw in test_rw]
test_left_words = keras.preprocessing.sequence.pad_sequences(test_lw, maxlen=max_len_lw, padding="pre", truncating="pre")
test_right_words = keras.preprocessing.sequence.pad_sequences(test_rw, maxlen=max_len_rw, padding="pre", truncating="pre")
if args.lda:
predictions = model.predict([test_left_words, test_right_words, topics])
else:
predictions = model.predict([test_left_words, test_right_words, topics])
predicted = [idx_to_tgt[p] for p in predictions.argmax(axis=1)]
print("\n".join(predicted))
def regularizer_factory(l2, prior, adapt=False):
prior_weights = K.constant(prior)
def null_regularizer(weight_matrix):
return 0 * weight_matrix
def regularizer(weight_matrix):
return K.sum(l2 * K.square(weight_matrix - prior_weights))
if adapt:
return regularizer
else:
return null_regularizer
def nr(weight_matrix):
return 0 * weight_matrix
def regularized_adaptation(args):
BATCH_SIZE = 160
with keras.utils.CustomObjectScope({L1L2_m.__name__: L1L2_m}):
model = keras.models.load_model("%s.h5" % args.model)
model.layers[4].kernel_regularizer.set_l1_l2(0, 0.01)
model.layers[4].kernel_regularizer.set_prior(model.layers[4].get_weights()[0])
model.layers[5].kernel_regularizer.set_l1_l2(0, 0.01)
model.layers[5].kernel_regularizer.set_prior(model.layers[5].get_weights()[0])
model.layers[7].kernel_regularizer.set_l1_l2(0, 0.01)
model.layers[7].kernel_regularizer.set_prior(model.layers[7].get_weights()[0])
model.layers[9].kernel_regularizer.set_l1_l2(0, 0.01)
model.layers[9].kernel_regularizer.set_prior(model.layers[9].get_weights()[0])
model.layers[11].kernel_regularizer.set_l1_l2(0, 0.01)
model.layers[11].kernel_regularizer.set_prior(model.layers[11].get_weights()[0])
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
with open("%s.maps" % args.model, encoding="utf-8") as f:
word_to_idx, tgt_to_idx, max_len_lw, max_len_rw = json.load(f)
train_lw, train_rw, train_lc, train_rc, train_tgt, _, _ = read_dataset(args.FILE)
train_lw = [vectorize_words(lw, word_to_idx) for lw in train_lw]
train_rw = [vectorize_words(rw, word_to_idx, reverse=True) for rw in train_rw]
train_tgt = vectorize_words(train_tgt, tgt_to_idx)
targets = keras.utils.to_categorical(train_tgt, num_classes=len(tgt_to_idx.values()))
train_left_words = keras.preprocessing.sequence.pad_sequences(train_lw, maxlen=max_len_lw, padding="pre", truncating="pre")
train_right_words = keras.preprocessing.sequence.pad_sequences(train_rw, maxlen=max_len_rw, padding="pre", truncating="pre")
val_lw, val_rw, val_tgt, _, _ = read_dataset(args.val)
val_lw = [vectorize_words(lw, word_to_idx) for lw in val_lw]
val_rw = [vectorize_words(rw, word_to_idx, reverse=True) for rw in val_rw]
val_tgt = vectorize_words(val_tgt, tgt_to_idx)
val_targets = keras.utils.to_categorical(val_tgt, num_classes=len(tgt_to_idx.values()))
val_left_words = keras.preprocessing.sequence.pad_sequences(val_lw, maxlen=max_len_lw, padding="pre", truncating="pre")
val_right_words = keras.preprocessing.sequence.pad_sequences(val_rw, maxlen=max_len_rw, padding="pre", truncating="pre")
early_stopper = keras.callbacks.EarlyStopping(monitor="val_loss", patience=2)
model.fit([train_left_words, train_right_words], targets, batch_size=BATCH_SIZE, epochs=args.epochs,
callbacks=[early_stopper], validation_data=([val_left_words, val_right_words], val_targets))
model.save("%s_adapt.h5" % args.model)
with open("%s_adapt.maps" % args.model, mode="w", encoding="utf-8") as f:
json.dump((word_to_idx, tgt_to_idx, max_len_lw, max_len_rw), f, ensure_ascii=False)
def main():
args = arguments()
args.func(args)
if __name__ == "__main__":
cpus = int(multiprocessing.cpu_count() * 0.42)
K.set_session(K.tf.Session(config=K.tf.ConfigProto(intra_op_parallelism_threads=cpus, inter_op_parallelism_threads=cpus)))
main()