-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTensorflow_FFNN_MNIST.py
61 lines (49 loc) · 1.89 KB
/
Tensorflow_FFNN_MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
## Data import
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("/tmp/data/", one_hot=True)
import tensorflow as tf
## Model's Hyperparameters
learning_rate=0.1
num_steps=500
batch_size=128
display_steps=50
n_input=784
n_hidden1=128
n_hidden2=128
n_output=10
## Inputs
X=tf.placeholder(shape=[None,n_input], dtype=tf.float32)
Y=tf.placeholder(shape=[None,n_output], dtype=tf.float32)
## Initial weights and biases for all layers
W={
'h1':tf.Variable(tf.random_normal(shape=[n_input,n_hidden1])),
'h2':tf.Variable(tf.random_normal(shape=[n_hidden1,n_hidden2])),
'out':tf.Variable(tf.random_normal(shape=[n_hidden2,n_output]))
}
b={
'h1':tf.Variable(tf.random_normal(shape=[n_hidden1])),
'h2':tf.Variable(tf.random_normal(shape=[n_hidden2])),
'out':tf.Variable(tf.random_normal(shape=[n_output]))
}
## Neural Model Definition
def model(x):
layer1=tf.add(tf.matmul(x,W['h1']),b['h1'])
layer2=tf.add(tf.matmul(layer1,W['h2']),b['h2'])
out_layer=tf.add(tf.matmul(layer2,W['out']),b['out'])
return out_layer
logits=model(X)
loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y))
opt=tf.train.AdamOptimizer(learning_rate=learning_rate)
train_step=opt.minimize(loss)
correct_prediction=tf.equal(tf.argmax(logits,1), tf.argmax(Y,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
init=tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for i in range(num_steps):
x_batch, y_batch = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={X:x_batch, Y:y_batch})
if (i+1)%display_steps ==0 or (i+1)==1:
acc=sess.run(accuracy, feed_dict={X:x_batch, Y:y_batch})
print("Step ",(i+1)," Accuracy = ",acc)
print("Testing Accuracy = ",sess.run(accuracy, feed_dict={X:mnist.test.images, Y:mnist.test.labels}))