-
Notifications
You must be signed in to change notification settings - Fork 578
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Muelu: use 4 map constructor for Kokkos-based TentativePFactory #2954
Merged
Merged
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -649,39 +649,32 @@ namespace MueLu { | |
// unnecessary). | ||
const Kokkos::TeamPolicy<execution_space> policy(numAggregates, 1); | ||
|
||
Kokkos::parallel_for("MueLu:TentativePF:BuildUncoupled:main_loop", policy, | ||
KOKKOS_LAMBDA(const typename Kokkos::TeamPolicy<execution_space>::member_type &thread) { | ||
auto agg = thread.league_rank(); | ||
if (doQRStep) { | ||
Kokkos::parallel_for("MueLu:TentativePF:BuildUncoupled:main_loop", policy, | ||
KOKKOS_LAMBDA(const typename Kokkos::TeamPolicy<execution_space>::member_type &thread) { | ||
auto agg = thread.league_rank(); | ||
|
||
// size of the aggregate (number of DOFs in aggregate) | ||
LO aggSize = aggRows(agg+1) - aggRows(agg); | ||
// size of the aggregate (number of DOFs in aggregate) | ||
LO aggSize = aggRows(agg+1) - aggRows(agg); | ||
|
||
// Extract the piece of the nullspace corresponding to the aggregate, and | ||
// put it in the flat array, "localQR" (in column major format) for the | ||
// QR routine. Trivial in 1D. | ||
if (goodMap) { | ||
// Extract the piece of the nullspace corresponding to the aggregate, and | ||
// put it in the flat array, "localQR" (in column major format) for the | ||
// QR routine. Trivial in 1D. | ||
auto norm = ATS::magnitude(zero); | ||
|
||
if (doQRStep) { | ||
// Calculate QR by hand | ||
// FIXME: shouldn't there be stridedblock here? | ||
// FIXME_KOKKOS: shouldn't there be stridedblock here? | ||
for (decltype(aggSize) k = 0; k < aggSize; k++) { | ||
auto dnorm = ATS::magnitude(fineNSRandom(agg2RowMapLO(aggRows(agg)+k),0)); | ||
norm += dnorm*dnorm; | ||
} | ||
norm = sqrt(norm); | ||
// Calculate QR by hand | ||
// FIXME: shouldn't there be stridedblock here? | ||
// FIXME_KOKKOS: shouldn't there be stridedblock here? | ||
for (decltype(aggSize) k = 0; k < aggSize; k++) { | ||
auto dnorm = ATS::magnitude(fineNSRandom(agg2RowMapLO(aggRows(agg)+k),0)); | ||
norm += dnorm*dnorm; | ||
} | ||
norm = sqrt(norm); | ||
|
||
if (norm == zero) { | ||
// zero column; terminate the execution | ||
statusAtomic(1) = true; | ||
return; | ||
} | ||
} else { | ||
// The easiest and less code churn way is to just declare the | ||
// norm to one, that the column of tentative P is just scaled by | ||
// identity | ||
norm = ATS::magnitude(one); | ||
if (norm == zero) { | ||
// zero column; terminate the execution | ||
statusAtomic(1) = true; | ||
return; | ||
} | ||
|
||
// R = norm | ||
|
@@ -697,16 +690,10 @@ namespace MueLu { | |
vals(localRow) = localVal; | ||
|
||
} | ||
|
||
} else { | ||
// FIXME_KOKKOS: implement non-standard map QR | ||
// Look at the original TentativeP for how to do that | ||
statusAtomic(0) = true; | ||
return; | ||
} | ||
}); | ||
}); | ||
|
||
typename status_type::HostMirror statusHost = Kokkos::create_mirror_view(status); | ||
Kokkos::deep_copy(statusHost, status); | ||
for (decltype(statusHost.size()) i = 0; i < statusHost.size(); i++) | ||
if (statusHost(i)) { | ||
std::ostringstream oss; | ||
|
@@ -718,102 +705,127 @@ namespace MueLu { | |
throw Exceptions::RuntimeError(oss.str()); | ||
} | ||
|
||
} else { // NSdim > 1 | ||
// FIXME_KOKKOS: This code branch is completely unoptimized. | ||
// Work to do: | ||
// - Optimize QR decomposition | ||
// - Remove INVALID usage similarly to CoalesceDropFactory_kokkos by | ||
// packing new values in the beginning of each row | ||
// We do use auxilary view in this case, so keep a second rows view for | ||
// counting nonzeros in rows | ||
|
||
// NOTE: the allocation (initialization) of these view takes noticeable time | ||
size_t nnzEstimate = numRows * NSDim; | ||
rows_type rowsAux("Ptent_aux_rows", numRows+1); | ||
cols_type colsAux("Ptent_aux_cols", nnzEstimate); | ||
vals_type valsAux("Ptent_aux_vals", nnzEstimate); | ||
rows = rows_type("Ptent_rows", numRows+1); | ||
{ | ||
// Stage 0: fill in views. | ||
SubFactoryMonitor m2(*this, "Stage 0 (InitViews)", coarseLevel); | ||
|
||
// The main thing to notice is initialization of vals with INVALID. These | ||
// values will later be used to compress the arrays | ||
Kokkos::parallel_for("MueLu:TentativePF:BuildPuncoupled:for1", range_type(0, numRows+1), | ||
KOKKOS_LAMBDA(const LO row) { | ||
rowsAux(row) = row*NSDim; | ||
}); | ||
Kokkos::parallel_for("MueLu:TentativePF:BuildUncoupled:for2", range_type(0, nnzEstimate), | ||
KOKKOS_LAMBDA(const LO j) { | ||
colsAux(j) = INVALID; | ||
valsAux(j) = zero; | ||
}); | ||
} | ||
} else { | ||
Kokkos::parallel_for("MueLu:TentativePF:BuildUncoupled:main_loop_noqr", policy, | ||
KOKKOS_LAMBDA(const typename Kokkos::TeamPolicy<execution_space>::member_type &thread) { | ||
auto agg = thread.league_rank(); | ||
|
||
{ | ||
SubFactoryMonitor m2 = SubFactoryMonitor(*this, doQRStep ? "Stage 1 (LocalQR)" : "Stage 1 (Fill coarse nullspace and tentative P)", coarseLevel); | ||
// Set up team policy with numAggregates teams and one thread per team. | ||
// Each team handles a slice of the data associated with one aggregate | ||
// and performs a local QR decomposition | ||
const Kokkos::TeamPolicy<execution_space> policy(numAggregates,1); // numAggregates teams a 1 thread | ||
LocalQRDecompFunctor<LocalOrdinal, GlobalOrdinal, Scalar, DeviceType, decltype(fineNSRandom), | ||
decltype(aggDofSizes /*aggregate sizes in dofs*/), decltype(maxAggSize), decltype(agg2RowMapLO), | ||
decltype(statusAtomic), decltype(rows), decltype(rowsAux), decltype(colsAux), | ||
decltype(valsAux)> | ||
localQRFunctor(fineNSRandom, coarseNS, aggDofSizes, maxAggSize, agg2RowMapLO, statusAtomic, | ||
rows, rowsAux, colsAux, valsAux, doQRStep); | ||
Kokkos::parallel_reduce("MueLu:TentativePF:BuildUncoupled:main_qr_loop", policy, localQRFunctor, nnz); | ||
} | ||
// size of the aggregate (number of DOFs in aggregate) | ||
LO aggSize = aggRows(agg+1) - aggRows(agg); | ||
|
||
// R = norm | ||
coarseNS(agg, 0) = one; | ||
|
||
// Q = localQR(:,0)/norm | ||
for (decltype(aggSize) k = 0; k < aggSize; k++) { | ||
LO localRow = agg2RowMapLO(aggRows(agg)+k); | ||
SC localVal = fineNSRandom(agg2RowMapLO(aggRows(agg)+k),0); | ||
|
||
rows(localRow+1) = localRow+1; | ||
cols(localRow) = agg; | ||
vals(localRow) = localVal; | ||
|
||
typename status_type::HostMirror statusHost = Kokkos::create_mirror_view(status); | ||
for (decltype(statusHost.size()) i = 0; i < statusHost.size(); i++) | ||
if (statusHost(i)) { | ||
std::ostringstream oss; | ||
oss << "MueLu::TentativePFactory::MakeTentative: "; | ||
switch(i) { | ||
case 0: oss << "!goodMap is not implemented"; break; | ||
case 1: oss << "fine level NS part has a zero column"; break; | ||
} | ||
throw Exceptions::RuntimeError(oss.str()); | ||
} | ||
}); | ||
} | ||
|
||
// Compress the cols and vals by ignoring INVALID column entries that correspond | ||
// to 0 in QR. | ||
|
||
// The real cols and vals are constructed using calculated (not estimated) nnz | ||
cols = decltype(cols)("Ptent_cols", nnz); | ||
vals = decltype(vals)("Ptent_vals", nnz); | ||
{ | ||
// Stage 2: compress the arrays | ||
SubFactoryMonitor m2(*this, "Stage 2 (CompressRows)", coarseLevel); | ||
|
||
Kokkos::parallel_scan("MueLu:TentativePF:Build:compress_rows", range_type(0,numRows+1), | ||
KOKKOS_LAMBDA(const LO i, LO& upd, const bool& final) { | ||
upd += rows(i); | ||
if (final) | ||
rows(i) = upd; | ||
}); | ||
} | ||
} else { // NSdim > 1 | ||
// FIXME_KOKKOS: This code branch is completely unoptimized. | ||
// Work to do: | ||
// - Optimize QR decomposition | ||
// - Remove INVALID usage similarly to CoalesceDropFactory_kokkos by | ||
// packing new values in the beginning of each row | ||
// We do use auxilary view in this case, so keep a second rows view for | ||
// counting nonzeros in rows | ||
|
||
// NOTE: the allocation (initialization) of these view takes noticeable time | ||
size_t nnzEstimate = numRows * NSDim; | ||
rows_type rowsAux("Ptent_aux_rows", numRows+1); | ||
cols_type colsAux("Ptent_aux_cols", nnzEstimate); | ||
vals_type valsAux("Ptent_aux_vals", nnzEstimate); | ||
rows = rows_type("Ptent_rows", numRows+1); | ||
{ | ||
// Stage 0: fill in views. | ||
SubFactoryMonitor m2(*this, "Stage 0 (InitViews)", coarseLevel); | ||
|
||
// The main thing to notice is initialization of vals with INVALID. These | ||
// values will later be used to compress the arrays | ||
Kokkos::parallel_for("MueLu:TentativePF:BuildPuncoupled:for1", range_type(0, numRows+1), | ||
KOKKOS_LAMBDA(const LO row) { | ||
rowsAux(row) = row*NSDim; | ||
}); | ||
Kokkos::parallel_for("MueLu:TentativePF:BuildUncoupled:for2", range_type(0, nnzEstimate), | ||
KOKKOS_LAMBDA(const LO j) { | ||
colsAux(j) = INVALID; | ||
valsAux(j) = zero; | ||
}); | ||
} | ||
|
||
{ | ||
SubFactoryMonitor m2(*this, "Stage 2 (CompressCols)", coarseLevel); | ||
|
||
// FIXME_KOKKOS: this can be spedup by moving correct cols and vals values | ||
// to the beginning of rows. See CoalesceDropFactory_kokkos for | ||
// example. | ||
Kokkos::parallel_for("MueLu:TentativePF:Build:compress_cols_vals", range_type(0,numRows), | ||
KOKKOS_LAMBDA(const LO i) { | ||
LO rowStart = rows(i); | ||
|
||
size_t lnnz = 0; | ||
for (auto j = rowsAux(i); j < rowsAux(i+1); j++) | ||
if (colsAux(j) != INVALID) { | ||
cols(rowStart+lnnz) = colsAux(j); | ||
vals(rowStart+lnnz) = valsAux(j); | ||
lnnz++; | ||
} | ||
}); | ||
{ | ||
SubFactoryMonitor m2 = SubFactoryMonitor(*this, doQRStep ? "Stage 1 (LocalQR)" : "Stage 1 (Fill coarse nullspace and tentative P)", coarseLevel); | ||
// Set up team policy with numAggregates teams and one thread per team. | ||
// Each team handles a slice of the data associated with one aggregate | ||
// and performs a local QR decomposition | ||
const Kokkos::TeamPolicy<execution_space> policy(numAggregates,1); // numAggregates teams a 1 thread | ||
LocalQRDecompFunctor<LocalOrdinal, GlobalOrdinal, Scalar, DeviceType, decltype(fineNSRandom), | ||
decltype(aggDofSizes /*aggregate sizes in dofs*/), decltype(maxAggSize), decltype(agg2RowMapLO), | ||
decltype(statusAtomic), decltype(rows), decltype(rowsAux), decltype(colsAux), | ||
decltype(valsAux)> | ||
localQRFunctor(fineNSRandom, coarseNS, aggDofSizes, maxAggSize, agg2RowMapLO, statusAtomic, | ||
rows, rowsAux, colsAux, valsAux, doQRStep); | ||
Kokkos::parallel_reduce("MueLu:TentativePF:BuildUncoupled:main_qr_loop", policy, localQRFunctor, nnz); | ||
} | ||
|
||
typename status_type::HostMirror statusHost = Kokkos::create_mirror_view(status); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. See above comment. |
||
Kokkos::deep_copy(statusHost, status); | ||
for (decltype(statusHost.size()) i = 0; i < statusHost.size(); i++) | ||
if (statusHost(i)) { | ||
std::ostringstream oss; | ||
oss << "MueLu::TentativePFactory::MakeTentative: "; | ||
switch(i) { | ||
case 0: oss << "!goodMap is not implemented"; break; | ||
case 1: oss << "fine level NS part has a zero column"; break; | ||
} | ||
throw Exceptions::RuntimeError(oss.str()); | ||
} | ||
|
||
// Compress the cols and vals by ignoring INVALID column entries that correspond | ||
// to 0 in QR. | ||
|
||
// The real cols and vals are constructed using calculated (not estimated) nnz | ||
cols = decltype(cols)("Ptent_cols", nnz); | ||
vals = decltype(vals)("Ptent_vals", nnz); | ||
{ | ||
// Stage 2: compress the arrays | ||
SubFactoryMonitor m2(*this, "Stage 2 (CompressRows)", coarseLevel); | ||
|
||
Kokkos::parallel_scan("MueLu:TentativePF:Build:compress_rows", range_type(0,numRows+1), | ||
KOKKOS_LAMBDA(const LO i, LO& upd, const bool& final) { | ||
upd += rows(i); | ||
if (final) | ||
rows(i) = upd; | ||
}); | ||
} | ||
|
||
{ | ||
SubFactoryMonitor m2(*this, "Stage 2 (CompressCols)", coarseLevel); | ||
|
||
// FIXME_KOKKOS: this can be spedup by moving correct cols and vals values | ||
// to the beginning of rows. See CoalesceDropFactory_kokkos for | ||
// example. | ||
Kokkos::parallel_for("MueLu:TentativePF:Build:compress_cols_vals", range_type(0,numRows), | ||
KOKKOS_LAMBDA(const LO i) { | ||
LO rowStart = rows(i); | ||
|
||
size_t lnnz = 0; | ||
for (auto j = rowsAux(i); j < rowsAux(i+1); j++) | ||
if (colsAux(j) != INVALID) { | ||
cols(rowStart+lnnz) = colsAux(j); | ||
vals(rowStart+lnnz) = valsAux(j); | ||
lnnz++; | ||
} | ||
}); | ||
} | ||
} | ||
|
||
GetOStream(Runtime1) << "TentativePFactory : aggregates do not cross process boundaries" << std::endl; | ||
|
@@ -823,28 +835,19 @@ namespace MueLu { | |
SubFactoryMonitor m2(*this, "Stage 3 (LocalMatrix+FillComplete)", coarseLevel); | ||
|
||
local_matrix_type lclMatrix = local_matrix_type("A", numRows, coarseMap->getNodeNumElements(), nnz, vals, rows, cols); | ||
#if 1 | ||
// FIXME_KOKKOS: this should be gone once Xpetra propagate "local matrix + 4 maps" constructor | ||
auto PtentCrs = CrsMatrixFactory::Build(rowMap, coarseMap, lclMatrix); | ||
PtentCrs->resumeFill(); // we need that for rectangular matrices | ||
|
||
// Managing labels & constants for ESFC | ||
RCP<ParameterList> FCparams; | ||
if(pL.isSublist("matrixmatrix: kernel params")) | ||
FCparams=rcp(new ParameterList(pL.sublist("matrixmatrix: kernel params"))); | ||
if (pL.isSublist("matrixmatrix: kernel params")) | ||
FCparams = rcp(new ParameterList(pL.sublist("matrixmatrix: kernel params"))); | ||
else | ||
FCparams= rcp(new ParameterList); | ||
FCparams = rcp(new ParameterList); | ||
|
||
// By default, we don't need global constants for TentativeP | ||
FCparams->set("compute global constants",FCparams->get("compute global constants",false)); | ||
std::string levelIDs = toString(levelID); | ||
FCparams->set("Timer Label",std::string("MueLu::TentativeP-")+levelIDs); | ||
RCP<const Export> dummy_e; | ||
RCP<const Import> dummy_i; | ||
|
||
PtentCrs->expertStaticFillComplete(coarseMap, A->getDomainMap(), dummy_i, dummy_e, FCparams); | ||
#else | ||
FCparams->set("compute global constants", FCparams->get("compute global constants", false)); | ||
FCparams->set("Timer Label", std::string("MueLu::TentativeP-") + toString(levelID)); | ||
|
||
auto PtentCrs = CrsMatrixFactory::Build(lclMatrix, rowMap, coarseMap, coarseMap, A->getDomainMap()); | ||
#endif | ||
Ptentative = rcp(new CrsMatrixWrap(PtentCrs)); | ||
} | ||
} | ||
|
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Isn't there a missing
Kokkos::deep_copy (statusHost, status)
after this? It might work only because of the UVM assumption, but I would like to purge that at some point.