-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathABML.py
53 lines (42 loc) · 1.85 KB
/
ABML.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.preprocessing import MinMaxScaler
import warnings
from collections import Counter
from keras.layers import Dense
import json
from keras import Sequential
def training(df):
df = df.dropna()
df.isna().any()
#df = df.drop('id', axis=1)
pre_y = df['ar']
pre_X = df.drop('ar',axis = 1)
dm_X = pd.get_dummies(pre_X)
dm_y = pre_y.map(dict(Y=1, N=0))
#smote = SMOTE(ratio='minority') #for balancing yes/nos
#X1, y = smote.fit_sample(dm_X, dm_y)
sc = MinMaxScaler()
X = sc.fit_transform(dm_X)
#Counter(y)
X_train, X_test, dm_y_train, dm_y_test = train_test_split(X, dm_y, test_size=0.3, random_state = 42, shuffle = True)
classifier = Sequential()
classifier.add(Dense(units = 400, activation = 'relu', kernel_initializer='random_normal', input_dim=X_test.shape[1]))
classifier.add(Dense(units = 800, activation = 'relu', kernel_initializer='random_normal'))
classifier.add(Dense(units = 10, activation = 'relu', kernel_initializer='random_normal'))
classifier.add(Dense(units = 1, activation = 'sigmoid', kernel_initializer='random_normal'))
classifier.compile(optimizer='adam',loss = 'binary_crossentropy', metrics = ['accuracy'])
classifier.fit(X_train,dm_y_train,batch_size=30,epochs=100,verbose=0)
eval_model = classifier.evaluate(X_train, dm_y_train)
y_pred = classifier.predict(X_test)
y_pred = (y_pred>0.5)
import pickle
from sklearn.externals import joblib
filename = "abpredictor.pkl"
joblib.dump(classifier, filename)
#a lot of yes' hidden in 0.4 and 0.5
if __name__=='__main__':
df = pd.read_csv('C:\\Users\\pawan\\Desktop\\pharmafuture\\pharmafuture\\data.csv')
training(df)