
With the introduction of the String Catalogs in Xcode 15, developers can now specify device
variation and substitution rules using a user-friendly UI. Those rules, contrary to the simple
plural rules, are not natively supported by the Transifex web interface.

The upcoming versions of the Transifex Native iOS SDK as well as the accompanying CLI
tool, have implemented a way to allow those rules to be extracted, processed and rendered
in the application.

In order for that to happen, the CLI tool now detects the new rules and produces a XML
structure, that is presented in the web interface, allowing translators to localize the strings
with ease.

The reason the CLI tool needs to convert those rules into this intermediate XML structure, is
so that the parsed rules can be represented in the web interface while maintaining the extra
metadata (plural rules) needed for their reconstruction later on.

After the localization has been completed and the strings are pulled from the server by the
application, the SDK parses those XML structures and synthesizes an ICU rule during the
SDK initialization (when the cache is populated). This step is needed so that the XML
parsing does not occur when a string is requested, potentially impacting performance.

This synthesized ICU rule is then ready to be used when requested by the UI logic of the
application, alongside the argument(s) that the application will provide for the pluralizaation.

Processing device variations and
substitutions
String Catalogs

Below are some examples of this process.

Developer decides to have a label on their app, showing the current device type. For that, it
creates a new string in the String Catalog, with the key 'device' and varies the values by
devices like so:

Example 1: Simple device rule

When this string is exported for localization, the intermediate .xliff representation will
be something like the following:

<trans-unit id="device|==|device.appletv" xml:space="preserve">
 <source>This is an Apple TV</source>
 <target state="translated">This is an Apple TV</target>
 <note/>
</trans-unit>
<trans-unit id="device|==|device.applevision" xml:space="preserve">
 <source>This is an Apple Vision</source>
 <target state="translated">This is an Apple Vision</target>
 <note/>
</trans-unit>
<trans-unit id="device|==|device.applewatch" xml:space="preserve">
 <source>This is an Apple Watch</source>
 <target state="translated">This is an Apple Watch</target>
 <note/>
</trans-unit>
<trans-unit id="device|==|device.ipad" xml:space="preserve">
 <source>This is an iPad</source>
 <target state="translated">This is an iPad</target>
 <note/>
</trans-unit>
<trans-unit id="device|==|device.iphone" xml:space="preserve">
 <source>This is an iPhone</source>
 <target state="translated">This is an iPhone</target>
 <note/>
</trans-unit>
<trans-unit id="device|==|device.ipod" xml:space="preserve">
 <source>This is an iPod</source>
 <target state="translated">This is an iPod</target>
 <note/>
</trans-unit>
<trans-unit id="device|==|device.mac" xml:space="preserve">
 <source>This is a Mac</source>
 <target state="translated">This is a Mac</target>
 <note/>
</trans-unit>
<trans-unit id="device|==|device.other" xml:space="preserve">
 <source>This is a device</source>
 <target state="translated">This is a device</target>
 <note/>
</trans-unit>

When using the Transifex CLI tool, the above representation is not visible to the developer.
The CLI tool transforms the above representation to the following format and pushes it to
CDS:

This structure is then displayed within the Transifex web interface, in a way that prevents
translators from changing the XML tag names and attributes:

Upon pulling the translated strings, the SDK parses this XML structure and picks the proper
tag based on the current device type.

Similar to the above example, developer can create a string in the String Catalog that
features two (or more) different tokens, that based on the number that is passed during
rendering for each token, it can display a different pluralization rule:

<cds-root>
 <cds-unit id="device.appletv">This is an Apple TV</cds-unit>
 <cds-unit id="device.applevision">This is an Apple Vision</cds-unit>
 <cds-unit id="device.applewatch">This is an Apple Watch</cds-unit>
 <cds-unit id="device.ipad">This is an iPod</cds-unit>
 <cds-unit id="device.iphone">This is an iPhone</cds-unit>
 <cds-unit id="device.ipod">This is an iPad</cds-unit>
 <cds-unit id="device.mac">This is a Mac</cds-unit>
 <cds-unit id="device.other">This is a device</cds-unit>
</cds-root>

Example 2: Substitutions

In the intermediate .xliff representation, the above rule becomes:

<trans-unit id="substitutions" xml:space="preserve">
 <source>Found %1$#@arg1@ having %2$#@arg2@</source>
 <target state="translated">Found %1$#@arg1@ having %2$#@arg2@</target>
 <note/>
</trans-unit>
<trans-unit id="substitutions|==|substitutions.arg1.plural.one" xml:space="preserve">
 <source>%1$ld user</source>
 <target state="translated">%1$ld user</target>
 <note/>
</trans-unit>
<trans-unit id="substitutions|==|substitutions.arg1.plural.other" xml:space="preserve">
 <source>%1$ld users</source>
 <target state="translated">%1$ld users</target>
 <note/>
</trans-unit>
<trans-unit id="substitutions|==|substitutions.arg2.plural.one" xml:space="preserve">
 <source>%2$ld device</source>
 <target state="translated">%2$ld device</target>
 <note/>
</trans-unit>
<trans-unit id="substitutions|==|substitutions.arg2.plural.other" xml:space="preserve">
 <source>%2$ld devices</source>
 <target state="translated">%2$ld devices</target>
 <note/>
</trans-unit>

Using the CLI tool, the above rule is transformed in the following XML structure and is
passed to CDS:

Notice that the key in the main phrase (Found %1$#@arg1@ having %2$#@arg2@) is
picked by the developer, so the id here most likely will not be substitutions . The
SDK always sets it to "substitutions" though so that the key information is not encoded inside
the source string contents.

The web interface then displays the structure like so:

When the localized strings of that rule are pulled and parsed by the SDK, the SDK
transforms the XML structure in one rule that contains multiple ICU rules:

Found %1$#@{arg1, plural, one {%ld user} other {%ld users}}@ having
%2$#@{arg2, plural, one {%ld device} other {%ld devices}}@

The above rule is then used whenever this string is about to be rendered in the UI. The
positional specifiers (1$, 2$ and so on) are left intact so that the logic can pick the
proper argument for the proper rule.

When this string is about to be presented to the user, with the arguments 1 and 10

passed by the applicaton logic, then the SDK reads those arguments, picks up the proper
rule, and constructs the final string:

Found 1 user having 10 devices

<cds-root>
 <cds-unit id="substitutions">Found %1$#@arg1@ having %2$#@arg2@</cds-unit>
 <cds-unit id="substitutions.arg1.plural.one">%1$ld user</cds-unit>
 <cds-unit id="substitutions.arg1.plural.other">%1$ld users</cds-unit>
 <cds-unit id="substitutions.arg2.plural.one">%2$ld device</cds-unit>
 <cds-unit id="substitutions.arg2.plural.other">%2$ld devices</cds-unit>
</cds-root>

Example 3: More complex rules

More complex rules can be constructed by the developer inside the String Catalog: A string
can feature substitutions on top of device variations or device variations on plural rules. All
those cases are handled correctly by the SDK.

Here is an example of a substitution rule with device variation:

As with the above, the intermediate .xliff representation is the following:

<trans-unit id="substitutions_and_device|==|device.iphone" xml:space="preserve">
 <source>This iPhone contains %1$#@user_iphone@ with %2$#@folder_iphone@ </source>
 <target state="translated">This iPhone contains %1$#@user_iphone@ with %2$#@folder_iphone@ </target>
 <note/>
</trans-unit>
<trans-unit id="substitutions_and_device|==|device.mac" xml:space="preserve">
 <source>This Mac contains %1$#@user_mac@ with %2$#@folder_mac@ </source>
 <target state="translated">This Mac contains %1$#@user_mac@ with %2$#@folder_mac@ </target>
 <note/>
</trans-unit>
<trans-unit id="substitutions_and_device|==|substitutions.folder_iphone.plural.one" xml:space="preserve">
 <source>%2$ld folder</source>
 <target state="translated">%2$ld folder</target>
 <note/>
</trans-unit>

The above rules are transformed to the following XML structure by the CLI tool and pushed
to CDS:

<trans-unit id="substitutions_and_device|==|substitutions.folder_iphone.plural.other" xml:space="preserve">
 <source>%2$ld folders</source>
 <target state="translated">%2$ld folders</target>
 <note/>
</trans-unit>
<trans-unit id="substitutions_and_device|==|substitutions.folder_mac.plural.one" xml:space="preserve">
 <source>%2$ld folder</source>
 <target state="translated">%2$ld folder</target>
 <note/>
</trans-unit>
<trans-unit id="substitutions_and_device|==|substitutions.folder_mac.plural.other" xml:space="preserve">
 <source>%2$ld folders</source>
 <target state="translated">%2$ld folders</target>
 <note/>
</trans-unit>
<trans-unit id="substitutions_and_device|==|substitutions.user_iphone.plural.one" xml:space="preserve">
 <source>%1$ld user</source>
 <target state="translated">%1$ld user</target>
 <note/>
</trans-unit>
<trans-unit id="substitutions_and_device|==|substitutions.user_iphone.plural.other" xml:space="preserve">
 <source>%1$ld users</source>
 <target state="translated">%1$ld users</target>
 <note/>
</trans-unit>
<trans-unit id="substitutions_and_device|==|substitutions.user_mac.plural.one" xml:space="preserve">
 <source>%1$ld user</source>
 <target state="translated">%1$ld user</target>
 <note/>
</trans-unit>
<trans-unit id="substitutions_and_device|==|substitutions.user_mac.plural.other" xml:space="preserve">
 <source>%1$ld users</source>
 <target state="translated">%1$ld users</target>
 <note/>
</trans-unit>

The web interface displays the above structure like so:

When the localized strings of that rule are pulled and parsed by the SDK, the SDK picks up
the correct rule based on the current device (in this example the current device is a Mac) and
transforms the XML structure in one rule that contains multiple ICU rules:

This Mac contains %1$#@{user_mac, plural, one {%ld user} other {%ld
users}}@ with %2$#@{folder_mac, plural, one {%ld folder} other {%ld
folders}}@

When the string is about to be rendered in the UI, if the arguments are 1 and 5 the final
rendered string becomes:

This Mac contains 1 user with 5 folders

One advantage from the support of the above rules, is that support for substitution rules has

<cds-root>
 <cds-unit id="device.iphone">This iPhone contains %1$#@user_iphone@ with %2$#@folder_iphone@ </cds-unit>
 <cds-unit id="device.mac">This Mac contains %1$#@user_mac@ with %2$#@folder_mac@ </cds-unit>
 <cds-unit id="substitutions.folder_iphone.plural.one">%2$ld folder</cds-unit>
 <cds-unit id="substitutions.folder_iphone.plural.other">%2$ld folders</cds-unit>
 <cds-unit id="substitutions.folder_mac.plural.one">%2$ld folder</cds-unit>
 <cds-unit id="substitutions.folder_mac.plural.other">%2$ld folders</cds-unit>
 <cds-unit id="substitutions.user_iphone.plural.one">%1$ld user</cds-unit>
 <cds-unit id="substitutions.user_iphone.plural.other">%1$ld users</cds-unit>
 <cds-unit id="substitutions.user_mac.plural.one">%1$ld user</cds-unit>
 <cds-unit id="substitutions.user_mac.plural.other">%1$ld users</cds-unit>
</cds-root>

Strings Dictionary Files

been also introduced for the old .stringsdict file format, which is the most common
format used by developers right now.

The intermediate .xliff representation is the following:

The above rules are transformed to the following XML structure by the CLI tool and pushed
to CDS:

<trans-unit id="/old_substitution:dict/NSStringLocalizedFormatKey:dict/:string" xml:space="preserve">
 <source>%#@num_people_in_room@ in %#@room@</source>
 <target>%#@num_people_in_room@ in %#@room@</target>
 <note/>
</trans-unit>
<trans-unit id="/old_substitution:dict/num_people_in_room:dict/one:dict/:string" xml:space="preserve">
 <source>Only %d person</source>
 <target>Only %d person</target>
 <note/>
</trans-unit>
<trans-unit id="/old_substitution:dict/num_people_in_room:dict/other:dict/:string" xml:space="preserve">
 <source>Some people</source>
 <target>Some people</target>
 <note/>
</trans-unit>
<trans-unit id="/old_substitution:dict/num_people_in_room:dict/zero:dict/:string" xml:space="preserve">
 <source>No people</source>
 <target>No people</target>
 <note/>
</trans-unit>
<trans-unit id="/old_substitution:dict/room:dict/one:dict/:string" xml:space="preserve">
 <source>%d room</source>
 <target>%d room</target>
 <note/>
</trans-unit>
<trans-unit id="/old_substitution:dict/room:dict/other:dict/:string" xml:space="preserve">
 <source>%d rooms</source>
 <target>%d rooms</target>
 <note/>
</trans-unit>
<trans-unit id="/old_substitution:dict/room:dict/zero:dict/:string" xml:space="preserve">
 <source>no room</source>
 <target>no room</target>
 <note/>
</trans-unit>

Notice how the old_substitutions key was renamed to substitutions , so that it
behaves in the same manner as the String Catalogs approach.

The web interface displays the structure like so:

When the localized strings of that rule are pulled and parsed by the SDK, the SDK
transforms the XML structure in one rule that contains multiple ICU rules:

%1$#@{num_people_in_room, plural, one {Only %d person} other {Some
people} zero {No people}}@ in %2$#@{room, plural, one {%d room} other
{%d rooms} zero {no room}}@

Notice how this intermediate ICU rule includes positional specifiers that are not added by the
String Dictionary format. Those specifiers are really important so that the proper argument is
picked up.

If the arguments for that string are 3 and 4 then the final string becomes:

Some people in 4 rooms

<cds-root>
 <cds-unit id="substitutions">%#@num_people_in_room@ in %#@room@</cds-unit>
 <cds-unit id="substitutions.num_people_in_room.plural.one">Only %d person</cds-unit>
 <cds-unit id="substitutions.num_people_in_room.plural.other">Some people</cds-unit>
 <cds-unit id="substitutions.num_people_in_room.plural.zero">No people</cds-unit>
 <cds-unit id="substitutions.room.plural.one">%d room</cds-unit>
 <cds-unit id="substitutions.room.plural.other">%d rooms</cds-unit>
 <cds-unit id="substitutions.room.plural.zero">no room</cds-unit>
</cds-root>

